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Abstract 

Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease, the pathogenesis of 
which is not clear. Clinical remission, or decreased disease activity, is the aim of treatment for RA. However, our under-
standing of disease activity is inadequate, and clinical remission rates for RA are generally poor. In this study, we used 
multi-omics profiling to study potential alterations in rheumatoid arthritis with different disease activity levels.

Methods Fecal and plasma samples from 131 rheumatoid arthritis (RA) patients and 50 healthy subjects were col-
lected for 16S rRNA sequencing, internally transcribed spacer (ITS) sequencing, and liquid chromatography-tandem 
mass spectrometry (LC–MS/MS). The PBMCS were also collected for RNA sequencing and whole exome sequencing 
(WES). The disease groups, based on 28 joints and ESR (DAS28), were divided into DAS28L, DAS28M, and DAS28H 
groups. Three random forest models were constructed and verified with an external validation cohort of 93 subjects.

Results Our findings revealed significant alterations in plasma metabolites and gut microbiota in RA patients with 
different disease activities. Moreover, plasma metabolites, especially lipid metabolites, demonstrated a significant cor-
relation with the DAS28 score and also associations with gut bacteria and fungi. KEGG pathway enrichment analysis of 
plasma metabolites and RNA sequencing data demonstrated alterations in the lipid metabolic pathway in RA progres-
sion. Whole exome sequencing (WES) results have shown that non-synonymous single nucleotide variants (nsSNV) of 
the HLA-DRB1 and HLA-DRB5 gene locus were associated with the disease activity of RA. Furthermore, we developed 
a disease classifier based on plasma metabolites and gut microbiota that effectively discriminated RA patients with 
different disease activity in both the discovery cohort and the external validation cohort.

Conclusion Overall, our multi-omics analysis confirmed that RA patients with different disease activity were altered 
in plasma metabolites, gut microbiota composition, transcript levels, and DNA. Our study identified the relationship 
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between gut microbiota and plasma metabolites and RA disease activity, which may provide a novel therapeutic 
direction for improving the clinical remission rate of RA.

Keywords Rheumatoid arthritis, DAS28-ESR, Multi-omics, Lipid metabolism, Whole exome sequencing, Random 
forest

Introduction
Rheumatoid arthritis (RA), a complex systemic autoim-
mune inflammatory disease, could cause severe symp-
toms like bone destruction and joint deformity [1–3]. 
However, its pathogenesis remains largely unknown. 
Meanwhile, RA is highly heterogeneous; RA patients at 
different stages show different clinical symptoms and 
respond differently to antirheumatic drugs [4, 5]. Conse-
quently, the disease assessment and the therapy process 
monitoring of RA are particularly important. Clinically, 
the disease activity score 28 (DAS28) is one of the most 
used measurement methods for the disease assessment 
of RA patients [6, 7]. However, due to the limited under-
standing of RA disease activity, the rate of RA remission 
is generally low at present [8]. Thus, there is a continuous 
need for further study to determine the potential changes 
in the progression or remission of RA disease activity 
and then develop a more effective disease assessment 
model to assist the clinical evaluation of RA patients and 
improve the clinical remission rate of RA.

At present, omics emerged as a robust research tool 
in the field of RA, such as metabolomics, microbiomics, 
and genomics [9–14]. Metabolomics could be used for 
quantitative analysis of metabolites in organisms which 
closely related to the occurrence and development of dis-
eases. Previous studies have shown that metabolites were 
associated with the progression of RA disease and could 
be applied to distinguish the disease state of RA patients 
[15]. Microbiomics is a discipline that studies bacteria, 
lower or higher eukaryotes, and human diseases. The 
number of microorganisms in the human body is far 
more than the number of cells, which play an important 
role in physiological and pathological activities. Previous 
studies demonstrated that the intestinal flora imbalance 
could significantly affect the host immune system and 
cause various diseases, like RA [11, 12, 16]. Furthermore, 
bacterial pathogens in the gastrointestinal tract could 
also aggravate disease activity [17]. The whole exome 
sequencing (WES) can identify rare gene mutations and 
discover the underlying pathological mechanism [18]. At 
present, the WES has been applied to study the patho-
genesis, disease progression, and genetic variation of RA 
and found that multiple gene variations are associated 
with altered immune pathways and increased risk of RA 
[13, 14]. Currently, the application of multi-omics com-
bined analysis has achieved remarkable success in the 

diagnosis, treatment, and prognosis of diseases; thus, 
multi-omics combined analysis hold great potential in 
RA study. But there is little data about RA acquired by 
the multi-omics combined analysis.

In this study, we measured the changes in plasma 
metabolites, gut bacteria, and fungi in RA patients with 
different disease activity levels. We clarified the relation-
ship between plasma metabolites, gut microbiota, and 
RA disease activity. Then, our study explored the poten-
tial mechanisms of changes in disease activity by multi-
omics and provided a promising therapeutic direction for 
improving the clinical remission rate of RA.

Methods
Subject recruitment and sample collection
We recruited 50 healthy control (HC) volunteers and 
131 RA patients hospitalized in Dazhou Central Hos-
pital. All RA patients met the diagnostic criteria for 
American College of Rheumatology/European League 
Against Rheumatism 2010 and were older than 18 years 
[1]. Osteoarthritis, psoriatic arthritis, and other auto-
immune diseases were excluded. The patients were 
assessed by professional RA specialists using DAS28-
ESR score before admission. Finally, RA patients 
were further divided into three groups according to 
DAS28 score: DAS28L (DAS28 ≤ 3.2, n = 10), DAS28M 
(3.2 < DAS28 ≤ 5.1, n = 45), and DAS28H (DAS28 > 5.1, 
n = 76).

Clinical information was collected for all subjects, 
including joint tenderness number, swelling number, 
c-reactive protein (CRP, mg/L), rheumatoid factor (RF, 
IU/mL), erythrocyte sedimentation rate (ESR, mm/h), 
medication use status, and comorbidities, as detailed 
in Supplementary Table  1. Fasting peripheral venous 
blood was collected from all subjects in the morning of 
the second day after admission into the EDTA antico-
agulant tube, and fresh stool samples from each subject 
were collected. Blood and fecal samples were immedi-
ately transported to the laboratory, pre-treated accord-
ing to the standard processing procedures required for 
sample analysis, and immediately cold stored at − 80  °C. 
Furthermore, we included an external validation cohort 
of 93 people, who met the same inclusion and exclusion 
criteria as the discovery cohort and were also divided 
into healthy controls (HC) group (n = 20), DAS28L group 
(n = 21), DAS28M group (n = 23), and DAS28H group 
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(N = 29). Similarly, we collected their clinical information 
as detailed in Supplementary Table 2.

Fecal sample total DNA extraction and sequencing
Total DNA was extracted from the stool samples of the 
subjects by a biotechnology company (Magi Bio, China), 
and 16S of bacteria were amplified from the extracted 
DNA with primers 338F ACT CCT ACG GGA GGC AGC 
AG and 806R GGA CTA CHVGGG TWT CTAAT rRNA 
gene fragment (V3-V4); the ITS of fungi was amplified 
from the extracted DNA with primers ITS1F CTT GGT 
CAT TTA GAG GAA GTAA and ITS2R GCT GCG TTC 
TTC TTC TTC ATC GAT GC. Finally, the obtained ampli-
con sequence variation (ASVs) was extracted and leveled 
according to the minimum sample sequence number. 
Detailed analysis method is shown in Supplementary 
material 1.

Non‑targeted metabolomics
The subjects’ plasma samples were analyzed for non-
targeted metabolomics by UPLC-MS/MS by a metabolic 
company (MagiBio, China). Metabolites with missing val-
ues greater than 80% in each group of the original values 
and relative standard deviation (RSD) greater than 30% 
in QC samples were removed. Meanwhile, the missing 
values in the original values were filled with minimum 
values to preprocess the expression data of the original 
detection results. Detailed description of metabolomics 
analysis method is shown in Supplementary material 2.

RNA sequencing
The subjects’ PBMC samples were extracted with total 
RNA using standard methods by a biological company 
(Norogene, Beijing); RNA integrity and total amounts 
were assessed with Agilent 2100 BioAnalyzer (Agilent 
Technologies, CA, USA). Library preparation was done 
by NEBNext® Ultra™ RNA Library Prep Kit for Illu-
mina®. After the library is qualified, Illumina NovaSeq 
6000 was used for sequencing and 150-bp paired-end 
readings were generated. The reference genome index 
was constructed by HISAT2 (v2.0.5), and paired-end 
clean reads were aligned with the reference genome.

Whole exome sequencing
In brief, DNA was extracted from the peripheral blood 
mononuclear cells (PBMC) of subjects according to 
QIAamp DNA Blood Mini Kit (Qiagen, Germany) 
instructions. Library preparation and purification 
were done according to the Illumina® DNA Prep with 
Enrichment (Tagmentation), Illumina Exome Panel, and 
Agencourt AMPure XP (Beckman, USA) instructions, 
respectively. Sequencing was performed using NextSeq 
2000. After the raw data were obtained by sequencing, 

the information analysis and screening process was car-
ried out based on the HG19 human reference genome. 
The analysis process mainly includes (1) sequencing data 
quality assessment, (2) mutation detection to find SNP 
and InDel, and (3) mutation site screening.

Statistical analysis
Partial analysis results of non-target metabolite analysis, 
bacterial diversity, and fungal diversity were analyzed via 
online platform of Majorbio cloud platform (www. major 
bio. com), including orthogonal partial least-squares dis-
criminant analysis (OPLS-DA), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment, α 
diversity analysis, linear discriminant analysis (LDA) 
effect size (LEfSe) analysis, and Phylogenetic Investiga-
tion of Communities by Reconstruction of Unobserved 
States (PICRUSt2) function prediction analysis. Analysis 
of all results was performed by using GraphPad Prism 
(v8.0), SPSS Statistics (V.25.0.0.0), STRING (https:// 
cn. string- db. org), Cytoscape (V3.9.1), and R software 
(V3.6.2).

Results
Analysis workflow
The entire analytical process is summarized in Fig.  1 to 
explore the association between plasma metabolites, 
gut microbes, transcript levels, non-synonymous single 
nucleotide variants (nsSNV), and RA disease activity. The 
contents include the discovery cohort population distri-
bution (Fig. 1A) and multi-omics analysis of RA with dif-
ferent disease activity levels (Fig. 1B). The random forest 
model performs receiver operator characteristic curve 
(ROC) analysis in the external validation cohort (Fig. 1C).

Changes of characteristic plasma metabolites in RA 
with different disease activity levels
To identify the differential metabolic characteristics 
among the four groups, we performed a non-targeted 
metabolomics test on fasting plasma of all participants. 
A total of 281 metabolites (cationic modes: 133, anionic 
modes: 148) were annotated in HMDB and Metlin data-
bases. The selection of significantly different metabolites 
was determined based on the variable importance for the 
projection (VIP) value of OPLS-DA model and P value 
by Wilcoxon test; VIP > 1, p < 0.05 were defined as sig-
nificantly different metabolites. Compared with the HC 
group, there were 28, 38, and 49 different metabolites 
in the three disease groups (Supplementary Fig.  1A-C). 
Comparison of DAS28M vs. DAS28L, and DAS28H vs. 
DAS28M with 8 and 9 metabolites is shown in Supple-
mentary Fig. 1D, E. The Venn diagram showed the same 
and specific differential metabolites between groups, 
suggesting that as the disease activity increases, the 

http://www.majorbio.com
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differential metabolites also increase (Supplementary 
Fig. 1F, G).

Next, based on Spearman correlation analysis, heat 
maps showed the relationship between clinical param-
eters and characteristic difference metabolites (Supple-
mentary Table  3). L-threonine, linoleic acid, deoxycholic 
acid, docosahexaenoic acid, 1,4-dihydroxybenzene, and 
L-tryptophan (A1-A6) have a negative relationship with 
inflammatory biomarkers (CRP, ESR, and IL-6) and DAS28 
scores in anion mode (Fig.  2A). Their relative expression 
abundance in three disease groups decreased (Fig.  2B). 
However, the reverse occurred for D-galacturonic acid 
(A7) (Fig.  2A, B). MG (18:2(9Z,12Z)/0:0/0:0), 1-oleoyl-
sn-glycero-3-phosphocholine (OGPC), 1-stearoyl-2-hy-
droxy-sn-glycero-3-phosphocholine (18:0LYSO-PE), and 
glycerophosphocholine (GPC) (C5-C8) also have a nega-
tive relationship with inflammatory biomarkers and DAS28 
score (Fig. 2C). Their relative expression abundance in three 
disease groups decreased (Fig. 2D). We performed KEGG 

pathway enrichment analysis with differential metabolites 
to explore the changes in metabolic pathways in RA pro-
gression. The metabolites in the disease group were mainly 
enriched in glycerophospholipid metabolism and glycine, 
serine, and threonine metabolism pathways compared with 
HC groups (Fig.  2E–G). Meanwhile, differential metabo-
lites between the disease groups were enriched in argi-
nine biosynthesis and linoleic acid metabolism pathways 
(Fig. 2H, I). These results suggest that metabolic pathways 
change during RA progression, especially glycerophospho-
lipid and linoleic acid pathways, which were defined as lipid 
metabolic pathways.

Changes in gut microbiota composition among RA 
with different disease activity levels
Intestinal microbiome composition of all subjects 
was detected by 16S rRNA and ITS sequencing; we 
found that, at the phylum level of gut bacteria, with 
the increase of disease activity, the relative abundance 

Fig. 1 Flow chart of experiment. A Population distribution for subjects in the discovery cohort. B Multi-omics analysis of RA with different disease 
activity levels. C ROC analysis of the external validation cohort in a classification model constructed through a random forest. RA, rheumatoid 
arthritis; HC, healthy controls; DAS28, Disease Activity Score 28; ITS, Internally Transcribed Spacer; LC–MS, liquid chromatograph mass spectrometer; 
MADAs, metabolites associated with disease activity; RA-seq, RA sequencing; WES, whole exome sequencing; DEGs, differentially expressed genes; 
nsSNV, non-synonymous single nucleotide variation; ROC, receiver operating characteristic curves
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Fig. 2 Analysis of characteristic plasma metabolites in RA with different disease activity levels. A, C Heat maps of correlation between characteristic 
metabolites in anionic (A) and cationic (C) modes and clinical indicators of RA. Spearman was used for correlation analysis. Red represents a 
positive correlation and blue represents a negative correlation. B, D The box plot showed that characteristic metabolites of anionic (B) and cationic 
(D) modules significantly changed between RA with different disease activity levels according to Wilcoxon rank-sum test. Boxes represent the 
inter-quartile ranges, and lines inside the boxes denote medians. E–I Differential metabolites of DAS28L vs. HC (E), DAS28M vs. HC (F), DAS28H vs. 
HC (G), DAS28M vs. DAS28L (F), and DAS28H vs. DAS28M (I) were enriched in KEGG pathway. The color bars indicate enrichment significance levels. 
P-value, *p < 0.05, **p < 0.01, ***p < 0.001
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proportion of Firmicutes decreased gradually, while 
Proteobacteria was the opposite (Supplementary 
Fig. 2A). Gut fungi were mainly composed of Ascomy-
cota and Basidiomycota. Ascomycota was enriched in 
the disease groups, while Basidiomycota was enriched 
in the HC groups (Supplementary Fig.  2B). We visu-
alized the species composition of bacteria and fungi 
at the genus level and found that other genera also 
showed various degrees of change (Fig.  3A, B). Can-
dida in fungi increased significantly in the disease 
group, but there was no significant difference among 
the disease groups (Fig.  3C). Penicillium was reduced 
in the disease group, especially in the das28H group 
(Supplementary Fig.  2C). Lactobacillus is considered 
an intestinal probiotic, and its relative abundance in 
the disease group was significantly higher than that in 
the HC group, but gradually decreased among the dis-
ease groups (Fig. 3D). Escherichia-Shigella was signifi-
cantly higher than HC groups in the disease group, and 
there was a significant difference between DAS28M, 
DAS28H groups, and HC groups (Fig. 3E).

We also studied changes of gut microbial diversity. 
By the Venn analysis of ASV in the four groups, intesti-
nal bacterial species diversity decreased in the DAS28L 
group and then gradually increased. Meanwhile, 
we also found that the number of specific bacteria 
increased with the increase of disease activity (Sup-
plementary Fig. 2D). We also found the same results in 
gut fungi (Supplementary Fig. 2E). In our results, only 
the alpha diversity indices of intestinal fungi Shannon 
even, Simpson, and Simpson even showed significant 
differences between the disease group and HC, while 
there was no difference among the disease group (Sup-
plementary Fig. 2F-H). Then, we performed PICRUSt2 
function prediction on bacterial 16S ribosomal ribo-
nucleic acid amplicon sequencing data, and the results 
showed that linoleic acid metabolic pathway was sig-
nificantly enhanced in DAS28M and DAS28H groups 
(Fig.  3F). However, glycerophospholipid metabolic 
pathway and arachidonic acid (AA) metabolic pathway 
were changed in the disease group, but there was no 
significant difference (Supplementary Fig. 2I, J).

To further study the potential differences between 
the HC group and RA with different disease activity 
levels, the LEfSe method was used to analyze the com-
position of intestinal microbes. At the bacterial genus 
level, Lactobacillus, an unidentified Prevotella, and 
Eubacterium were the bacteria with the highest LDA 
scores in DAS28L vs. HC DAS28M vs. DAS28L and 
DAS28H vs. DAS28M groups, respectively (Fig.  3G). 
Similarly, the fungi with the highest LDA scores were 
Candida, an unidentified Phaeosphaeriaceae, and 
Schizosaccharomyces, respectively (Fig. 3H).

Transcriptome analysis of RA suggests changes in lipid 
metabolism pathways
We sequenced RNA-seq data from a large number of RA 
patients with different disease activities and used princi-
pal component analysis to demonstrate that these disease 
groups were similar (Supplementary Fig.  3A). Com-
pared with the HC group, the differentially expressed 
genes (DEGs) in different disease groups increased with 
the increase in disease activity (Fig.  4A). Meanwhile, 
they had 162 shared DEGs, including 11 upregulated 
genes and 151 downregulated genes (Fig. 4B). A total of 
15 genes were associated with DAS28 score (Spearman, 
|R|> 0.1, P < 0.05), and their fold change was altered in dif-
ferent disease groups (Fig.  4C, Supplementary Table  4). 
Genes related to disease activity were mainly enriched 
in biological processes related to phosphatidylinositol 
3-kinase signaling (Fig.  4D). The most affected pathway 
was the chemokine signaling pathway (Fig. 4E). Similarly, 
genes related to chemokine signaling pathway were sig-
nificantly upregulated in RA by GSEA analysis (Fig. 4F). 
In addition, we also found that linoleic acid metabolism 
genes were significantly downregulated in RA (Fig. 4G). 
The same results were also observed for glycine, serine, 
and threonine metabolism; glycerophospholipid metabo-
lism; and arachidonic acid metabolism as linoleic acid 
metabolism (Supplementary Fig S3B-D).

Then, to demonstrate the changes of lipid metabolism 
pathways in the progression of RA, we further analyzed 
127 genes of three lipid metabolism pathways and found 
61 differential lipid metabolism-related genes (LMRGs) 
(FDR < 0.05, Supplementary Fig. 3E). Among them, 9 dif-
ferential LMRGs were associated with differential metab-
olites of lipid metabolism pathway (3 up-regulated and 
6 down-regulated). Compared with the DAS28L group, 
PLA2G6Z was significantly decreased in DAS28M and 
DAS28H groups (Fig.  4H). However, PTGS1 increased 
gradually with the increase in disease activity (Fig.  4I). 
Another LMRG, GDE1, was significantly increased only 
in the DAS28H group (Fig.  4J). Overall, transcriptional 
data analysis indicated that lipid metabolic pathways 
were altered during RA progression.

nsSNV of the HLA‑DRB1 and HLA‑DRB5 gene locus were 
associated with the disease activity of RA
We collected PMBC of 20 healthy subjects and 33 RA 
patients for WES analysis. A total of 97 nsSNV genes 
with mutation rate greater than 10% in exons were 
selected for protein–protein interaction (PPI) analysis on 
STRING with key protease genes in three lipid metabo-
lism pathways. Finally, a total of 74 genes participated 
in the protein interaction network of lipid metabolism 
(Fig. 5A). KEGG and GO enrichment analysis of these 74 
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Fig. 3 Changes of gut bacteria and fungi between RA with different disease activity levels. A, B The distribution plot of relative abundance at the 
genus level of bacteria (A) and fungi (B). C–E Relative abundance of Candida (C), Lactobacillus (D), and Escherichia-Shigella (E) in the HC group and 
RA with different disease activity levels groups. F Intestinal bacterial PICRUSt2 function predicts changes in linoleic acid metabolism pathway in RA 
progression. G, H LefSe analysis was used to identify highly differentiated taxa for RA gut bacteria (G) and fungi (H) with different disease activity 
levels and to display LDA scores. The bar chart shows the mean value of each group. Error bars represent the standard error of the mean values. RA, 
rheumatoid arthritis; HC, healthy controls; PICRUSt2, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States; LefSe, 
linear discriminant analysis (LDA) effect size; P-value, *p < 0.05, **p < 0.01, ***p < 0.001. NS, not significant
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genes showed that 3 genes were enriched in RA, namely 
HLA-DRB1, HLA-DRB5, and CCL3L3 (Fig.  5B). Mean-
while, leukotriene D4 metabolic process and leukotriene 
biosynthetic process are also significantly enriched (Sup-
plementary Fig. 4A). Per-Arnt-Sim Kinase has the largest 
number of connections in the network, followed by neu-
trophil solute factor 1 (NCF1) and ANKRD36C. NCF1 
was the gene with the largest number of nodes interact-
ing with lipid metabolism genes (Supplementary Fig. 4B). 
According to the statistical analysis of mutation rates of 
the six genes mentioned above in disease activity degree, 
the mutation rate of HLA-DRB5 rs1071748 was the high-
est, and the mutation rates of the three groups were 
40.0% (DAS28L), 53.8% (DAS28M), and 60.0% (DAS28H) 
respectively (Fig.  5C). Meanwhile, some gene loci of 
HLA-DRB1 and HLA-DRB5 were only mutated in the 
DAS28M groups and DAS28H groups. Similarly, we also 
found that the mutation rate of NCF1 rs201802880 in the 
DAS28L groups (20.0%) was lower than in the DAS28M 
groups (53.8%) and DAS28H groups (40.0%). Therefore, 
we hypothesized that nsSNV of the HLA-DRB1 and 
HLA-DRB5 gene locus may be associated with RA with 
the disease activity.

Multi‑omics analysis revealed the relationship between gut 
microbiota, plasma metabolites, LMRGs, and exons nsSNV 
and RA disease activity
In Fig.  2, metabolites enriched in glycerophospholipid 
and linoleic acid metabolic pathways were negatively 
correlated with RA disease activity. To further study the 
effect of gut microbe on metabolites associated with 
disease activity (MADAs) in lipid metabolism pathway, 
the bacteria and fungi with differences between the HC 
group and disease group and disease activity-related 
metabolites were used for correlation analysis. There 
were 28 fungal genera and 13 bacterial genera were sig-
nificantly correlated with MADAs, and they were also 
correlated among themselves (Spearman’s correlation 
analysis, p < 0.05, Fig. 6A, Supplementary Fig. 5). We used 
RA transcription data to demonstrate that genes related 
to lipid metabolism were altered in RA progression and 
correlated with disease activity. Meanwhile, the genes 
of nsSNV participated in the interaction network of key 
proteins in lipid metabolism. Therefore, we reasoned that 

plasma metabolites, gut microbe, and nsSNV together 
constitute a regulatory network for RA disease activity 
(Fig. 6B).

Identification and prediction of RA with different disease 
activities based on plasma metabolites and gut microbiota
The random forest algorithm was used to select charac-
teristic parameters for the differential metabolites, bac-
teria, and fungi of HC groups and three disease groups 
for classification model construction, and the area under 
the curve (AUC) value determines the number of impor-
tant characteristic parameters of the model. In DAS28L 
vs. HC, DAS28M vs. DAS28L, and DAS28H vs. DAS28M 
of the three models, the top 5, 4, and 5 characteristic 
parameters of importance were selected according to 
AUC values respectively to build the model (Supplemen-
tary Fig. 6A-F). ROC analysis was performed on the three 
models in the discovery cohort, and their AUC values 
were 0.987 (0.942,1.000), 0.769 (0.440,0.994), and 0.790 
(0.700,0.880), respectively (Fig. 7A). Meanwhile, we also 
included an external validation cohort with the same 
criteria as the discovery cohort. Finally, the three mod-
els were verified by an external validation cohort, and 
their AUC values were 1.000 (1.000, 1.000), 0.689 (0.531, 
0.847), and 0.682 (0.534, 0.829), respectively (Fig. 7B).

Discussion
In this study, we explored alterations in plasma metabo-
lites and gut microbiota in RA patients with different dis-
ease activity levels using 16S rRNA, ITS sequencing, and 
non-targeted metabolomics analysis. We observed that 
RA patients with different levels of disease activity exhib-
ited significant changes in both their gut microbiota and 
plasma metabolites. Plasma metabolites showed relation-
ships with gut bacteria and fungi, as well as a significant 
link with the DAS28 score. Furthermore, we discovered 
that RA patients with varying disease activity had varying 
degrees of transcriptional and DNA-level alterations, and 
these abnormalities were connected with illness activ-
ity. Finally, in both the discovery cohort and the exter-
nal validation cohort, the disease classifier based on gut 
microbiota and plasma metabolites was helpful for iden-
tifying and predicting RA patients with different disease 
activities.

Fig. 4 Transcriptome analysis of RA suggests changes in lipid metabolism pathways. A Volcano plots showing DEGs in RA with different disease 
activity, respectively. Red indicated upregulated genes, and green indicated downregulated genes. B Venn diagram showing 162 DEGs in common 
across RA with different disease activity. C Fold change of DAS28-related genes in RA with different disease activity. D, E Bar graphs showing the top 
10 most significant pathways of DAS28-related genes in Gene ontology term (D) and Kyoto Encyclopedia of Genes and Genomes (E) enrichment 
analysis. F, G GSEA analysis showing DEGs of RA vs. HC were upregulated in the chemokine signaling pathway (F) and downregulated in the linoleic 
acid metabolism pathway (G). H, J Expression of PLA2G6 (H), PTGS1 (I), and GDE1 (J) gene in lipid metabolism pathway in RA progression. The bar 
chart shows the mean value of each group. Error bars represent standard error of the mean values. RA, rheumatoid arthritis; HC, healthy controls; 
DEGs, differentially expressed genes; P-value, *p < 0.05, **p < 0.01, ***p < 0.001

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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In recent years, accumulating evidence indicated that 
the progression of RA is closely associated with gut 
microbes [16, 19]. We analyzed fecal bacterial diversity 
by 16S rRNA sequencing and concluded that the diversity 
of HC and RA with different disease activity levels did 
not change significantly, which was consistent with the 
conclusion by Yu et al. [20]. Firmicutes is a natural bar-
rier of the intestinal mucosa, which mainly plays a role in 
maintaining structural integrity. Firmicutes has specific 
functions in immune regulation and resistance to patho-
gens, and their reduction can lead to intestinal microbial 
dysbiosis, which is related to metabolic diseases [21, 22]. 
In our study, the relative proportion of Firmicutes in RA 
with different disease activity levels gradually decreased, 
signaling that the reduction of Firmicutes leads to fur-
ther dysbiosis and destruction of the intestinal mucosa, 
as well as decreased immune regulatory function and 
increased disease activity. Escherichia-Shigella in Proteo-
bacteria belongs to gram-negative bacillus. Additionally, 
lipopolysaccharide, the main component of its cell wall, 
can further increase intestinal mucosal permeability and 
aggravate inflammatory response [23]. Jeong et al., based 
on function prediction analysis of PICRUSt2, showed 
that genes related to lipopolysaccharide biosynthesis 
were significantly enriched in RA patients [24]. In this 
study, Escherichia-Shigella was significantly enriched in 
RA and increased in the DAS28M and DAS28H groups, 
indicating that intestinal mucosal structure would be fur-
ther damaged with exacerbation of disease.

Similarly, Candida, another important intestinal 
mucosal microorganism, is also associated with intes-
tinal mucosal structure. In the inflammatory microen-
vironment of intestinal diseases, the relative abundance 
and diversity of fungi, especially Candida, increased sig-
nificantly [25]. We found that the relative abundance of 
Candida also increased significantly in RA, which may 
further induce gut dysbiosis, epithelial cell damage, and 
invasive infection [26, 27].

The gut probiotics, including Lactobacillus and Bifido-
bacterium, that inhabited the human gut could regulate 
the immune function of the mucosa and maintain the 
balance of the gut flora [28]. Researchers found that after 
oral administration of Lactobacillus in collagen-induced 
arthritis (CIA) model rats, the expression of pro-inflam-
matory factors decreased while the expression of anti-
inflammatory factors increased, consequently improving 

score inflammation [29]. In another study, Lactobacillus 
was used to restore gut flora imbalance and avoid bone 
destruction in adjuvant-induced arthritis (AIA) model 
rats [30]. The relative abundance of Lactobacillus in RA 
has been reported to be increased as well as decreased 
in previous studies [31, 32]. Our results were consist-
ent with the former. Meanwhile, we also found that the 
decrease of Lactobacillus increased the DAS28 score. We 
speculate that the increase of Lactobacillus in early RA 
could improve the expression level of anti-inflammatory 
factors, thus dampening down inflammation. However, 
in the progress of RA, the gut microbiota was further 
disordered, and the relative abundance of Lactobacil-
lus decreased, resulting in decreased expression of anti-
inflammatory factors, and promoting RA disease activity.

The glycerophospholipid metabolism, linoleic acid 
metabolism, and AA metabolism together constitute 
lipid metabolism pathways. We observed that differen-
tial metabolites in the disease and HC groups were all 
enriched in the glycerophospholipid metabolism path-
way, and mainly 18:0 LYSO-PE, GPC, and choline in this 
pathway decreased during RA progression. 18:0 LySO-
PE and GPC were negatively correlated with the DAS28 
score, suggesting that decreased function of glycerophos-
pholipid metabolic pathway was associated with disease 
activity in RA progression. The results of bacterial func-
tion prediction also supported this conclusion. OGPC 
was also negatively correlated with DAS28 score, and its 
expression decreased with the progression of RA. In our 
previous studies, OGPC reduction has been identified 
as a promoting factor of increased IL-6 expression [33]. 
We were also concerned about the differential metabo-
lites enriched linoleic acid pathway in the DAS28H vs. 
DAS28M group, and the expression level of linoleic acid 
decreased during RA progression. Linoleic acid is an 
unsaturated fatty acid. Currently, there is controversy 
about the relationship between linoleic acid and inflam-
mation. First, several investigators have suggested that 
linoleic acid has anti-inflammatory potential by reduc-
ing IL-1 and IL-6 [34]. Furthermore, conjugated linoleic 
acid—an isomer of linoleic acid—reduced TNF-α con-
centration in RA patients and had an anti-inflammatory 
effect on active RA [35]. However, linoleic acid is also a 
precursor of the pro-inflammatory compounds AA and 
prostaglandin E2 (PGE2), which can aggravate inflam-
mation [36]. Our results showed that linoleic acid was 

(See figure on next page.)
Fig. 5 nsSNV of the HLA-DRB1 and HLA-DRB5 gene locus were associated with the disease activity of RA. A PPI analysis of genes with nsSNV 
mutation rate greater than 10% and genes involved in lipid metabolism pathways. The blue dots represent genes with RA PMBC nsSNV mutation 
rate greater than 10%, and the yellow dots represent genes associated with lipid metabolism pathways. The size of the point represents the node 
size of the gene in PPI. B KEGG pathway enrichment analysis bars of related genes in PPI analysis. Color bars indicate enrichment significance. C 
Mutation rates of nsSNV in related genes in different disease activity groups. nsSNV, non-synonymous single nucleotide variation; RA, rheumatoid 
arthritis; PPI, protein–protein interaction; PMBC, peripheral mononuclear blood cell
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Fig. 5 (See legend on previous page.)
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negatively correlated with disease activity, and the lin-
oleic acid metabolic pathway was enhanced in the pro-
gression of RA, which may be related to the increase of 
downstream metabolites of linoleic acid. Although our 

differential metabolites were not enriched in AA meta-
bolic pathway, PTGS1 mRNA expression level was sig-
nificantly increased with the increase of disease activity, 
indicating that AA metabolic pathway was also involved 

Fig. 6 Multi-omics analysis revealed the relationship between gut microbiota, plasma metabolites, LMRGs, and exons nsSNV and RA disease 
activity. A Association analysis of plasma metabolites and gut microbiota with RA disease activity. Red dots represent DAS28-ESR scores, yellow 
diamonds represent metabolites, cyan squares represent intestinal bacteria, purple triangles represent intestinal fungi, solid yellow lines indicate 
positive associations, and gray dotted lines indicate negative associations. All lines indicate significant associations (p < 0.05). B RA pathway change 
pattern diagram. Plasma metabolites, gut microbe, and nsSNV together constitute a regulatory network for RA disease activity. LMRGs, lipid 
metabolism-related genes; nsSNV, non-synonymous single nucleotide variation; RA, rheumatoid arthritis; PGE, prostaglandin E; LT, leukotriene; HETE, 
hydroxyeicosatetraenoic acid
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in RA disease progression. Taken together, the study of 
lipid metabolism pathway changes has a potential role in 
RA progression, and maybe find a new therapeutic direc-
tion to improve the clinical reduction rate of RA.

Previous studies have shown that anti-rheumatic 
drug treatment of RA alters the transcriptome molecu-
lar profile to be more similar to that of HCs [37]. Inamo 
et  al. identified 9 and 23 genes associated with clinical 
remission in rheumatoid arthritis CD4 and CD8 T cells, 
respectively [38]. Similarly, in our transcriptomic study, 
we found an association between gene expression levels 
and DAS28 scores. This suggests that changes in RA dis-
ease activity can be reflected at the transcriptional level.

This study was the first to analyze the relationship 
between nsSNV and RA disease activity by WES. In PPI 
analysis, NCF1 have the largest number of nodes inter-
acting with lipid metabolism genes. NCF1 is a 47-kDa 
cytosolic subunit of the nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase complex, which is 
physically related to protein arginine deiminases (PADs), 
a key enzyme in RA pathogenesis [39]. The mutation 
rate of NCF1 rs201802880 in the DAS28M and DAS28H 
groups was higher than that in the DAS28L group, indi-
cating that missense mutation of NCF1 rs201802880 may 
be related to both susceptibility to rheumatic diseases 
and disease activity [40]. Moreover, multiple nsSNVs 
of HLA-DRB1 and HLA-DRB5 gene locus have similar 

results to NCF1 RS201802880. Allele variants of HLA-
DRB1 and HLA-DRB5 were associated with RA risk 
and were positively associated with elevated ESR [41]. 
However, we have not found reports on the relationship 
between nsSNV of HLA-DRB1 and HLA-DRB5 and RA 
disease activity. Therefore, our findings may be another 
new field for studying the occurrence and development 
of RA.

Among the constructed models, the multi-omics model 
performance of the DAS28L vs. HC groups showed the 
best performance in the training and external validation 
cohort and a better result than the single-omics model 
[15]. Most of the characteristic parameters involved in 
the model construction were metabolites, including three 
metabolites in the glycerophospholipid metabolic path-
way, among which glycerophosphocholine was the most 
important feature to distinguish the two groups. This 
suggests plasma metabolites are a good marker to dis-
tinguish between healthy and RA. The other two groups 
of models (DAS28H vs. DAS28M groups, DAS28M vs. 
DAS28L groups) have better performance in the discov-
ery cohort with AUC value above 0.76, but the unsatis-
factory performance of the external validation cohort. 
The most likely cause was the characteristic parameters 
selected for model construction consist almost entirely 
of bacteria and fungi, and the species importance of 
metabolites ranks lower. There were fewer metabolites of 

Fig. 7 Diagnostic outcomes of RA disease activity are shown by the receiver operating characteristic curve (ROC). A ROC of three random forest 
models (DAS28L vs. HC, DAS28M vs. DAS28L, and DAS28H vs. DAS28M) in the discovery cohort. B ROC of three random forest models in the 
external validation cohort



Page 14 of 16Chen et al. Arthritis Research & Therapy           (2023) 25:74 

difference between disease groups, indicating intestinal 
microbes more favorable to distinguish between disease 
groups. Additionally, our study demonstrated plasma 
metabolites and intestinal microbes play complementary 
roles in distinguishing populations with different disease 
activity levels. The combined application of multi-omics 
could better assist the clinical evaluation of the disease 
status of RA patients.

There are several limitations in our study. Firstly, the 
discovery cohort of the DAS28L group included few 
study populations, which may miss some potential infor-
mation. Secondly, all RA patients in our study came 
from the inpatient system, and although we analyzed the 
vast majority of comorbidities, we could not completely 
exclude the potential impact of other comorbidities on 
this study. Thirdly, we found features in the transcrip-
tome that correlate with RA disease activity, and it is not 
clear to us whether these features have the same results 
at the protein level, which needs to be confirmed by data 
in proteomics, especially in synovial tissue. Finally, in the 
WES analysis, variant loci for some genes were found at 
increased frequencies in the moderate and high disease 
activity groups, and although this gene was reported to 
be associated with susceptibility to RA, this variant loci 
still needs to be validated in a larger cohort. Meanwhile, 
compared to whole genome analysis, WES may lose 
part of the variation information, including non-coding 
regions and structural variants. In the future, we will use 
the existing evidence to find more specific information 
from different dimensions to consolidate our findings.

Conclusion
In summary, compared with single or two omics analysis 
methods, we combined multiple omics analysis methods 
to explore more detail of the changes of plasma metabo-
lites, intestinal bacteria, and fungi in the progression of 
RA, as well as their relationship with disease activity. The 
potential role of lipid metabolic pathway alterations in 
RA progression may provide a possible novel therapeu-
tic direction for improving the clinical remission rate of 
RA. Furthermore, the model constructed based on multi-
omics could assist in the clinical evaluation of the disease 
status of RA patients.
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