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spondylitis through the secreted PDGFB — 
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Abstract 

Objectives Ankylosing spondylitis (AS) is a chronic inflammatory disease that mainly affects the sacroiliac joint 
and spine. However, the real mechanisms of immune cells acting on syndesmophyte formation in AS are not well 
identified. We aimed to find the key AS-associated cytokine and assess its pathogenic role in AS.

Methods A protein array with 1000 cytokines was performed in five AS patients with the first diagnosis and five 
age- and gender-matched healthy controls to discover the differentially expressed cytokines. The candidate dif-
ferentially expressed cytokines were further quantified by multiplex protein quantitation (3 AS-associated cytokines 
and 3 PDGF-pathway cytokines) and ELISA (PDGFB) in independent samples (a total of 140 AS patients vs 140 healthy 
controls). The effects of PDGFB, the candidate cytokine, were examined by using adipose-derived stem cells (ADSCs) 
and human fetal osteoblast cell line (hFOB1.19) as in vitro mesenchymal cell and preosteoblast models, respec-
tively. Furthermore, whole-transcriptome sequencing and enrichment of phosphorylated peptides were performed 
by using cell models to explore the underlying mechanisms of PDGFB. The xCELLigence system was applied to exam-
ine the proliferation, chemotaxis, and migration abilities of PDGFB-stimulated or PDGFB-unstimulated cells.

Results The PDGF pathway was observed to have abnormal expression in the protein array, and PDGFB expression 
was further found to be up-regulated in 140 Chinese AS patients. Importantly, PDGFB expression was significantly cor-
related with BASFI (Pearson coefficient/p value = 0.62/6.70E − 8) and with the variance of the mSASSS score (mSASSS 

2 years − baseline, Pearson coefficient/p value = 0.76/8.75E − 10). In AS patients, preosteoclasts secreted more PDGFB 
than the healthy controls (p value = 1.16E − 2), which could promote ADSCs osteogenesis and enhance collagen 
synthesis (COLI and COLIII) of osteoblasts (hFOB 1.19). In addition, PDGFB promoted the proliferation, chemotaxis, 
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Introduction
Ankylosing spondylitis (AS) is a chronic inflamma-
tory disease mainly affecting the sacroiliac joints and 
spine [1]. Most AS patients have syndesmophyte forma-
tion in both the sacroiliac joints and spine, thus causing 
stiffness. However, the pathogenesis of bone formation 
remains incompletely understood. In recent years, many 
studies have investigated the mechanism of syndesmo-
phyte formation in the sacroiliac joints and spine. Several 
clinical studies have focused on the relationship between 
inflammation and bone formation but have obtained 
contradictory results [2–5]. It remains unknown whether 
inflammation identified by MRI imaging can predict new 
syndesmophyte formation. Recently, several studies have 
examined cytokines that are associated with syndesmo-
phyte formation, such as the Wnt signaling pathway 
inhibitor dickkopf-1 (DKK1) [6, 7]. However, it remains 
difficult to predict syndesmophyte formation at the ini-
tial stage, and an effective target that could reverse or 
ameliorate the progression of syndesmophyte formation 
remains elusive.

Previous studies have identified several cytokines 
that affect new bone formation. In addition to DKK1, 
the dual blockade of TNF and IL-17A was reported to 
ameliorate inflammation and structural damage in a rat 
model of spondyloarthritis [8], suggesting that TNF and 
IL-17A have pathogenic effects on bone metabolism. 
Intriguingly, TGF-β could shift the proinflammatory 
action of TNF on macrophages to osteoclastogen-
esis [9]. Longitudinal case–control studies have also 
shown that VEGF, BMP-7, and serum adipokine levels 
are associated with radiographic spinal progression or 
serum markers of bone formation in AS patients [10–
12]. Cytokine regulation is complex due to its multifac-
eted effects on different cells and microenvironments, 
which has led to contradictory results when investi-
gating the expression levels and functions of cytokines 
[13–18]. The relationship between inflammation and 

bone formation in AS remains to be elucidated. To 
this end, we employed cytokine detection methods to 
deeply understand cytokine dysregulation in AS along 
with follow-up functional studies and propose that 
platelet-derived growth factor subunit B (PDGFB) plays 
a pathogenic role in syndesmophyte formation in AS.

PDGFB has been well studied and has a wide range of 
functions, especially in the blood vessels. Many studies 
have demonstrated that PDGFB positively stimulates 
bone formation both in cultured cells and in mouse 
models [19, 20]. Additionally, PDGFB has a strong 
impact on mesenchymal stem cells, such as alter-
ing their proliferation and migration [21]. In addition, 
null PDGFB is lethal in mice due to defects in several 
organs. Xie et  al. constructed a conditional-PDGFB-
knockout mouse model using the Cre-loxP approach 
and found that trabecular bone mass was largely 
decreased and bone formation was strongly inhibited in 
mice with osteoclast-specific Pdgfb mutants [22]. Evi-
dence has shown that increased PDGFB secretion by 
preosteoclast promotes angiogenesis in subchondral 
bone and then leads to osteoarthritis development [23]. 
Feng et  al. identified PDGFRB as a therapeutic target 
of ankylosing spondylitis from microarray datasets and 
found that PDGFRB was upregulated during the oste-
ogenesis of fibroblasts of AS [24]. A recent study also 
showed that PDGFB accelerated bone mineralization of 
enthesis cells of AS [25].

In the current study, we aimed to identify common 
pathogenic cytokines and explore the pathogenic mecha-
nism of candidate cytokines in AS. PDGFB was elevated 
in AS patients and correlated with syndesmophyte for-
mation. We found that PDGFB promotes the osteoblas-
togenesis of ADSCs, activates the GRB2/ERK/RUNX2 
pathway in ADSCs, and enhances the extracellular matrix 
of preosteoblasts, which may contribute to pathological 
bone formation. This previously unrecognized patho-
genic mechanism of PDGFB provides the potential for 

and migration of ADSCs. Mechanismly, in ADSCs, PDGFB stimulated ERK phosphorylation by upregulating GRB2 
expression and then increased the expression of RUNX2 to promote osteoblastogenesis of ADSCs.

Conclusion PDGFB stimulates the GRB2/ERK/RUNX2 pathway in ADSCs, promotes osteoblastogenesis of ADSCs, 
and enhances the extracellular matrix of osteoblasts, which may contribute to pathological bone formation in AS. 
 

Key messages
• PDGFB was elevated in plasma in AS patients than in healthy controls.
• Excessive PDGFB was secreted from preosteoclast and could promote osteogenesis of ADSCs by activating 
the GRB2/p-ERK/RUNX2 pathways.
• PDGFB enhanced the extracellular matrix of osteoblasts and may contribute to syndesmophyte formation.

Keywords Ankylosing spondylitis, Syndesmophyte formation, PDGFB, Osteogenesis
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a novel therapeutic target to treat inflammatory spinal 
damage in AS.

Methods
Subjects
Five Chinese AS patients with a first diagnosis and five 
sex- and age-matched healthy subjects were recruited 
in the discovery stage. Forty Chinese AS patients and 
twenty gender- and age-matched healthy patients were 
included in the validation I stage. The validation II 
stage included 40 Chinese AS patients who had stopped 
drug use for at least 1 month, 60 Chinese late-stage AS 
patients, and 120 healthy Chinese subjects. The 40 AS 
patients in validation II underwent X-rays of the spine 
at baseline and at the 2-year follow-up. AS patients with 
a first diagnosis were those who had received an AS 
diagnosis but had never been treated according to AS 
treatment guidelines. AS patients with late-stage dis-
ease had a radiological score of the sacroiliac joints of 
bilateral grade 3–4 and a radiological score of the spine 
(modified Stoke Ankylosing Spondylitis Spinal Score 
(mSASSS)) greater than 20, which requires bridging of 
at least 3 vertebrae or syndesmophytes at the scored 
vertebral sites [26]. All of the imaging scores were evalu-
ated by two experienced physicians [27]. The diagnosis 
of AS was performed according to the 1984 modified 
New York criteria of AS [28]. All participants signed 
written informed consent forms, and this study was 
approved by the institutional review boards of Guan-
ghua Integrative Medicine Hospital (2021-K-31) and 
Shanghai Pudong Hospital (2021-DS-Q-26). The details 
of the subjects are shown in Table S1.

Protein array
Protein expression in human plasma was detected by the 
Human Antibody Array 1000 produced by RayBio (Ray-
Biotech; Cat# AAH-BLG-1000; USA) in the discovery 
stage. It was performed according to the standard pro-
tocol provided by the manufacturer (https:// www. raybi 
otech. com/ files/ manual/ Antib ody- Array/ AAH- BLG- 
1000. pdf ).

Multiplex protein quantification and ELISA
Protein quantification of plasma in the validation I stage was 
performed using ProcartaPlex immunoassays (Invitrogen). 
We designed the panels (6 cytokines: IL-6, IL-23, IFN-γ, 
PDGFB, VEGF-D, and VEGF-R) and performed the assays 
according to the manual provided by the manufacturer. Fur-
ther quantification was performed on a Luminex 200, and the 
data analysis was performed according to a standard protocol 
(https:// assets. therm ofish er. com/ TFS- Assets/ LSG/ manua 
ls/ Proca rtaPl ex_ Analy st_1. 0_ SW_ Manual. June2 014. pdf). 

PDGFB quantification of cultured cells and all patients in the  
validation II stage was performed using an ELISA kit  
(Invitrogen, BMS 2071).

Human spinal entheseal tissues 
and immunohistochemistry (IHC) analysis
Interlaminar ligamentum flavum, interspinous liga-
ment, or supraspinal ligament tissue was obtained from 
AS patients and traumatic injury patients who had spi-
nal fractures when undergoing spinal surgery as con-
trols. The tissues were fixed in 4% paraformaldehyde for 
4–6  h and then embedded in paraffin. The paraformal-
dehyde-fixed paraffin-embedded sections were cut into 
5  μm using a Leica RM2235. Paraffin-embedded sec-
tions were first deparaffinized twice in a series of 100% 
xylene, rehydrated in a series of graded ethanol (100%, 
100%, 95%, and 80%), and then washed briefly in distilled 
water and PBS, respectively. Antigen thermal repair was 
performed with 0.01  M citrate buffer (pH6.0) or EDTA 
buffer (pH9.0) at high pressure, washed in PBS, sec-
tions were treated with 3% hydrogen peroxide-metha-
nol for 10 min and blocked with normal goat serum for 
30 min. Then, the sections were incubated overnight with 
PDGFB (1:100, Abcam, catalog: ab23914); GRB2 (1:50, 
Abcam, catalog: ab32037); P-ERK (1:100, Abcam, catalog: 
ab278538); RUNX2 (1:50, Abcam, catalog: ab76956) anti-
body at 4  °C. Goat anti-rabbit IgG secondary antibody 
(JACKSON, catalog: 111–035-003) was incubated and 
DAB solution (Sigma, catalog: D8001) was used for color 
development. All images were obtained using an Open-
field slice scanner (NanoZoomer S210).

Osteoclastogenesis assays
The osteoclastogenesis assays were performed accord-
ing to our previous study [29]. In brief, human peripheral 
blood mononuclear cells (PBMCs) were isolated by Ficoll 
reagent (GE Healthcare, Buckinghamshire, UK) and then 
monocytes were purified by anti-CD14-conjugated mag-
netic microbeads (Miltenyibiotech, Bergisch Gladbach, 
Germany). To induce osteoclast differentiation, mono-
cytes were stimulated with M-CSF (25  ng/mL, R&D 
Systems, 216-MC-010) and RANKL (40  ng/mL, R&D 
Systems, 390-TN-010) supplemented with 10% FBS and 
10% human serum. Tartrate-resistant acid phosphatase 
(TRAP) staining was performed with Acid Phosphatase 
Leucocyte Kit (ZuoChengBio, ZCIC216), and TRAP-
positive multinucleated cells (MNC) containing three or 
more nuclei were counted as preosteoclasts.

Cell culture and the treatments
Human adipose tissue was obtained through elective lipo-
suction with informed consent. The isolation and expan-
sion of adipose-derived MSCs (ADSCs) was conducted 

https://www.raybiotech.com/files/manual/Antibody-Array/AAH-BLG-1000.pdf
https://www.raybiotech.com/files/manual/Antibody-Array/AAH-BLG-1000.pdf
https://www.raybiotech.com/files/manual/Antibody-Array/AAH-BLG-1000.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/ProcartaPlex_Analyst_1.0_SW_Manual.June2014.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/ProcartaPlex_Analyst_1.0_SW_Manual.June2014.pdf
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according to previously published techniques [30]. 
Briefly, lipoaspirate was transferred into 50 mL tubes and 
centrifuged at 400 × g for 5 min. After digestion with col-
lagenase I and filtration through a 100-μm filter, the stro-
mal vascular fraction (SVF) was obtained. The cells were 
cultured in 175  cm2 flasks until the fifth passage and then 
used for cell therapy. The ADSCs were characterized by 
flow cytometry and were found to express CD73, CD90, 
and CD105 but not express CD31, CD34, CD45, or HLA-
DR, and the detector gain optimization and data quality 
checks were performed according to Gao et al. [31]. The 
ADSCs were first isolated and cultured in α-modified 
Eagle’s medium (α-MEM) supplemented with 10% FBS 
and antibiotics (100 U/mL penicillin and streptomycin) 
at 37  °C in a 5%  CO2 humidified incubator for approxi-
mately 3  days (coverage > 80%) after which the medium 
was changed to osteogenic medium (α-MEM plus 50 μM 
vitamin C, 10 mM β-phosphoglycerol and 100 nM dexa-
methasone) supplemented with 6% FBS and incubated 
for 21 days. The hFOB1.19 cells were obtained from the 
Shanghai Institute of Cell Biology, Chinese Academy of 
Sciences (Shanghai, China). The hFOB1.19 cells were 
cultured in Dulbecco’s modified Eagle’s medium/nutri-
ent mixture F-12 (DMEM/F12) supplemented with 10% 
FBS, 2  mmol/L L-glutamine, 100 U/mL penicillin and 
streptomycin, 0.3 mg/mL G418, and 1.5 g/L NaHCO3 at 
33.5 °C in a 5%  CO2 humidified incubator and were stim-
ulated with recombinant PDGFB (Abcam, ab259425) for 
14  days. For transfection experiments, cells were trans-
fected with 2.5  nmol/ml GRB2 or RUNX2 small inter-
fering (si)RNA mixed with 2  nmol/ml Lipofectamine 
RNAiMAX transfection reagent (Thermo Fisher Scien-
tific, Waltham, MA, USA). The ERK inhibitor was pur-
chased from Selleck (SCH772984) and was worked in a 
concentration of 300 nM.

Alkaline phosphatase (ALP) staining, Alizarin Red S 
(ARS) staining, and ADSC proliferation, migration, 
and chemotaxis
ALP staining was performed according to a published arti-
cle [32]. ARS staining was performed with Alizarin red S kit 
(ZuoChengBio, ZCIC123) according to the manufacturer’s 
instructions. The proliferation, migration, and chemotaxis 
experiments were also performed with the xCELLigence 
system according to previously published articles [33, 34].

RNA isolation, cDNA synthesis, real‑time RT‒PCR 
and western blotting
TRIzol reagent was used to extract total RNA from the 
cells according to the manufacturer’s instructions (Inv-
itrogen). A High Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems, Foster City, CA, USA) 
was used to perform reverse transcription according to 

the manufacturer’s protocol. Real-time PCR samples 
were mixed with SYBR Premix Ex Taq (TaKaRa Biotech, 
Tokyo, Japan) and analyzed with an ABI Prism 7900 
detector system (Applied Biosystems). β-actin was used 
as an internal control, and all primers used in this study 
are shown in Table S2. The assay statistics were analyzed 
with SDS 2.3 software (Applied Biosystems).

The cellular lysates extracted from cells were used for 
protein assays. The protein concentration was detected 
by a spectrophotometer according to the BCA protein 
assay kit procedure. Equal amounts of protein were sub-
jected to SDS‒PAGE on a 10% polyacrylamide gel and 
transferred to a polyvinylidene difluoride membrane 
(Millipore). The membrane with blotted protein was 
blocked for 1  h at room temperature with a blocking 
buffer containing 5% BSA and then incubated with anti-
bodies overnight at 4 °C. A housekeeping gene (GAPDH) 
was used as an internal control. The membrane was then 
incubated for 1  h at room temperature with secondary 
horseradish peroxidase-conjugated goat anti-rabbit or 
anti-mouse IgG after three 10-min washes with TBST. 
The protein bands were visualized with an ECL solu-
tion. Antibodies against ERK1/2 (ab201015), p-ERK1/2 
(ab278538), GRB2 (ab32037), RUNX2 (ab76956), ALP 
(ab83259), type I collagen (ab260043), and type III colla-
gen (ab184993) were purchased from Abcam.

Whole transcriptome sequencing (RNA sequencing) 
and pathway enrichment analysis
Total RNA was converted into a DNA library accord-
ing to the Illumina protocol (TruSeq Stranded Total 
RNA Sample Preparation Guide). The quality and the 
intact DNA were examined with an Agilent 2100, and 
subsequent DNA sequencing was performed with a 
HiSeq X Ten (Illumina) according to the standard pro-
tocol. The RNA sequencing data analysis was performed 
using TopHat and Cufflink according to a previously 
published article [35]. Pathway enrichment, including 
GO and KEGG analysis, was performed with the Func-
tional Interpretation of Differential Expression Analysis 
(FIDEA) database and KOBAS 3.0 [36, 37].

Enrichment of phosphorylated peptides using titanium 
dioxide
Phosphorylation characterization of the peptides was 
performed according to a previously published article 
[38]. Briefly, the samples were loaded onto a microcol-
umn packed with  TiO2. The phosphopeptides were then 
eluted from the column. The collected phosphopeptides 
were then eluted from a microcolumn packed with R3. 
Finally, the phosphopeptides were analyzed by LC–MS.
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Statistical analysis and plots
All of the experiments were performed in triplicate. 
The statistical analyses were performed with R software 
(v3.6.0). Unpaired sample t-test was used for unpaired 
samples and two-way ANOVA was used to evaluate the 
difference between the two treatments and their effect 
size. P values < 0.05 following FDR adjustment for multi-
ple testing corrections were considered to be statistically 
significant. All of the plots were generated by ggplot2 in 
R software.

Results
PDGFB was elevated in AS samples both in discovery stage 
and validation stage compared to healthy controls
A protein array (1000 cytokines) was performed in 5 
AS patients with a first diagnosis and 5 healthy samples 
(Fig. S1A, Table S3). Following the screening approach, 
several AS-associated pathways, such as Toll receptor 
homology, CC chemokine, and TNFR, were significantly 
clustered (Fig.  1A). Interestingly, the vascular-related 
pathway was also abnormally expressed in AS (Fig.  1A 
and S1B). We then detected the plasma expression 

of three vascular-related cytokines along with three 
known associated cytokines in 40 AS patients and 20 
healthy subjects in the validation I stage. The results 
showed that three known associated cytokines were 
also significantly elevated in the AS patients. The fold 
change (FC)/p values of IL-6, IL-23, and IFN-γ were 
1.75/8E − 3, 1.68/9E − 4, and 1.27/8E − 3, respectively. 
PDGFB was significantly higher in AS patients (Fig. 1B, 
FC/p value = 5.44/6E − 4). In the validation II stage, 
we detected the plasma expression of PDGFB in a Chi-
nese cohort (100 AS patients and 120 healthy subjects). 
PDGFB was consistently more highly expressed in the 
AS patients (FC/p value = 2.67/2.2E − 14). In the Chi-
nese cohort, AS patients with a first diagnosis had much 
higher PDGFB expression levels than AS patients with a 
long disease duration (> 5 years) (Fig. 1C).

PDGFB secreted from preosteoclasts was associated 
with the Bath Ankylosing Spondylitis Functional Index 
(BASFI) and mSASSS variation
PDGFB expression was positively correlated with 
the BASFI. The Pearson coefficient was 0.62 (p 

Fig. 1 Cytokines detected in AS patients and healthy controls. A Top pathway enrichment according to the InterPro database. B Differential 
expression of six cytokines in AS and healthy controls in validation I stage. C Differential expression of PDGFB in Chinese AS patients and healthy 
controls in the validation II stage. AS-1 represents the 40 AS patients at baseline in the validation II stage, and AS-2 represents the 60 late-stage 
AS patients who have had a disease duration longer than 5 years. The expression levels of cytokines were compared by unpaired sample t-tests. *** 
P < 0.005, ** P < 0.01
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value = 6.7E − 8, Fig. 2A). PDGFB also showed marginal 
associations with C-reactive protein (CRP) and the 
pain score (Pearson’s coefficient/p value = 0.16/0.02 and 
0.20/0.01, respectively), while it showed no association 
with the disease activity index (BASDAI), patient global 
assessment (PGA) or AS disease activity score (ASDAS) 
(Fig.  2B). Interestingly, we found that the plasma 
expression of PDGFB at baseline was associated with 
variance in the mSASSS (mSASSS 2 years later − baseline) in 
AS patients in validation II-40 (Pearson’s coefficient/p 

value = 0.76/8.75E − 10; Fig.  2C). To explore the origin 
of the excess PDGFB, monocytes were harvested from 
AS patients and healthy controls, and osteoclastogen-
esis assays were performed. Following stimulation 
for 3  days, the monocytes from AS patients secreted 
more PDGFB than those of healthy subjects (Fig. 2D, p 
value = 1.16E − 2). The result of the osteoclastogenesis 
assay was examined by TRAP staining and the mono-
cytes were differentiated into pre-osteoclast and osteo-
clast 7 days after the stimulation (Fig. 2E).

Fig. 2 Correlation of PDGFB with clinical indices. A Correlation between PDGFB and BASFI. B Correlation between PDGFB and all clinical 
information. C Correlation between PDGFB and ΔmSASSS in Chinese AS patients in validation II-40. D Expression level of PDGFB secreted 
from monocytes after stimulation with M-CSF and RANKL for 7 days, which were analyzed by ELISA. E TRAP staining of the osteoclastogenesis assay 
for 7 days stimulation. The expression levels of PDGFB in the AS group and control group were compared by unpaired sample t-tests. * P < 0.05
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PDGFB promoted the osteogenic differentiation, 
proliferation, chemotaxis, and migration of ADSCs
PDGFB promoted the differentiation of ADSCs into oste-
oblasts. The expression levels of OSN, COL1, and RUNX2 
were significantly increased after the ADSCs were stimu-
lated with PDGFB (Fig.  3A). Cell staining also showed 
that ADSCs stimulated with PDGFB had more intense 
ALP staining and Alizarin red S staining than controls 
(Fig. 3B–D). In addition, to exclude the possibility of the 
unequal number of cells in the two groups, normalization 
was performed with GAPDH and then the expression 
values of ALP and RUNX2 were quantified. The results 
showed that ALP and RUNX2 protein expression was 
much higher in the PDGFB ( +) group than in the PDGFB 
( −) group (FC/p value = 3.6/0.05 and 5.2/0.009, respec-
tively, Fig.  3E and F). Cell proliferation and migration 
activities were examined by the xCELLigence system. As 
shown in Fig. 3G and H, PDGFB increased the prolifera-
tion of ADSCs. In addition, PDGFB recruited ADSCs and 
increased their migration (Fig. 3I and J).

PDGFB activated the GRB2/ERK/RUNX2 pathway in ADSCs
The results of the whole-transcriptome analysis showed 
that PDGFB activated the MAPK pathway to strengthen 
the osteogenic differentiation of ADSCs (Fig.  4A, 
Table S4). In particular, the expression of GRB2 was 
significantly increased following stimulation (FC/p 
value = 2.1/0.008) (Fig.  4B). To determine the key phos-
phorylated molecule in the MAPK pathway, highly selec-
tive phosphorylated peptides were analyzed by titanium 
dioxide chromatography. ERK, MEK1, and MKNK 
were abnormally phosphorylated after stimulation with 
PDGFB (Fig. 4C). By considering both the RNA sequenc-
ing results and peptide phosphorylation data, we deter-
mined that PDGFB stimulates ERK phosphorylation 
and enhances RUNX2 expression through GRB2. The 
expression of GRB2 is then inhibited by siRNA in the 
ADSCs (Fig.  4D). The western blot results showed that 
in the si-GRB2 group, ERK phosphorylation and RUNX2 
expression were decreased, and the enhancement of 
GRB2/p-ERK/RUNX2 triggered by PDGFB was also 
inhibited by silencing the expression of GRB2 (Fig. 4E and 
F, Table S5). The ARS staining also showed that si-GRB2 
inhibited the mineralization of ADSCs, and the enhance-
ment of mineralization triggered by PDGFB was also 
decreased by the treatment of si-GRB2 (Fig.  4G and H, 
Table S6). To further explore the effects of the GRB2/p-
ERK/RUNX2 pathway triggered by PDGFB, we inhibited 
the expression of ERK by using the ERK inhibitor. The 
results showed that when the ADSCs were treated with 
both PDGFB and ERK inhibitor, the axis was significantly 
inhibited by ERK inhibition compared with that after 
stimulation with PDGFB alone (Fig.  4I and J, Table S7, 

mRNA levels were shown in Fig. S2A). In addition, when 
the ADSCs were stimulated with PDGFB, the GRB2/p-
ERK/RUNX2 axis was activated in dose- (Fig. 4K and L, 
mRNA levels were shown in Fig. S2B) and time- (Fig. S2C 
and D, mRNA levels were shown in Fig. S2E) dependent 
manner, which strengthen the role of PDGFB to this axis. 
Furthermore, the enhancement of PDGFB and the activa-
tion of the GRB2/p-ERK/RUNX2 pathway was found in 
the spinal entheseal tissues of AS patients (Fig. 5A and B).

PDGFB Enhanced the Extracellular Matrix (ECM) 
of preosteoblasts
FOB1.19 cells had no response to PDGFB regarding fur-
ther osteogenic differentiation, proliferation, chemot-
axis, or migration (Fig. S3A and B). First, we detected the 
expression of the axis pathway (GRB2/p-ERK/RUNX2) 
and found that GRB2 protein expression was relatively 
low in FOB1.19 cells even after stimulation with 60  ng/
mL PDGFB; thus, the MAPK pathway could not be acti-
vated after stimulation with PDGFB (Fig.  6A). To fur-
ther explore the impact of PDGFB on osteoblasts, RNA 
sequencing was performed. The pathways of focal adhe-
sion and ECM-receptor interaction were significantly 
enriched according to the KEGG analysis (Fig.  6B and 
S4B). The detailed genes are presented in Fig. S4C and 
D, and the fully enriched pathways are presented in Fig. 
S4A, B and Tables S8 and S9 for both GO and KEGG. 
The western blot results also showed that the expression 
of type I and III collagen was significantly enhanced after 
stimulation with PDGFB (Fig. 6C and D). In addition, to 
explore whether the enhancement of type I and III col-
lagen was RUNX2 dependent, we silenced the expres-
sion of RUNX2 by siRNA. The results showed that the 
enhancement of COL1 and COL3 triggered by PDGFB 
were both decreased after silencing the expression of 
RUNX2 (Fig.  6E and F, Table S10, mRNA levels were 
shown in Fig. S5), suggesting that the overexpression of 
COL1 and COL3 by PDGFB stimulation was RUNX2-
pathway dependent.

Discussion
Ankylosing spondylitis (AS) is an immune disease mainly 
affecting sacroiliac joints and the spine. However, the 
mechanism of abnormal bone formation in axial joints 
remains unknown [39]. Many studies have suggested that 
inflammation has a complex relationship with bone for-
mation [15, 40, 41], but the details of the mechanism are 
still not well understood. In this study, we aimed to iden-
tify an inflammatory cytokine that impacts bone homeo-
stasis and that partly explains ectopic bone formation in 
AS.

We found that the plasma expression of PDGFB was 
higher in AS patients than in controls. Furthermore, 
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Fig. 3 Effects of PDGFB on ADSCs. A The mRNA expression of several osteogenic-related genes in the two groups. B ALP staining of ADSCs 
in the two groups. C, D ARS staining of ADSCs in the two groups. E Western blot of ADSCs in the two groups. F Relative protein levels of ALP 
and RUNX2 in ADSCs. G Proliferation in the two groups. H Slope of proliferation in the two groups. I Chemotaxis in the two groups. J Migration 
results for the two groups. The gene expression levels and protein levels were compared by unpaired sample t-tests. ** P < 0.01, * P < 0.05
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PDGF expression in AS patients with a first diagno-
sis was about twice as high as that in AS patients with 
a long duration of illness. Because the patients with a 
first diagnosis had not been treated with any drugs, the 
identified elevated PDGFB expression might be involved 
in AS pathogenesis in the early stage of the disease. In 
addition, we found that PDGFB expression was corre-
lated with the formation of syndesmophytes, as evalu-
ated by X-ray. Therefore, we hypothesize that PDGFB is 
regulated by inflammatory cells and increases the risk 
of bone formation in AS patients. To demonstrate that 
abnormal PDGFB was secreted by inflammatory cells, we 
obtained monocytes from AS patients and healthy peo-
ple and stimulated the cells with M-CSF and RANKL. 
The results showed that after being stimulated for 3 days, 
PDGFB secretion from monocytes peaked and was sig-
nificantly higher than that of the controls. This result sug-
gested that the excessive PDGFB in AS likely arises from 
monocytes.

Previous studies have reported that PDGFB promotes 
osteogenic function, and several studies with mouse 
models have also demonstrated this [42–44]. Recent 
studies have also shown that PDGFB can enhance oste-
ogenic capabilities during the use of some alloplastic 
matrices and when using some gel membrane periosteal 
models for bone regeneration [45–47]. PDGFB is con-
sidered a potent initiator of bone formation [48]. How-
ever, some studies have come to the opposite conclusion 
[49]. The conflicting results suggest that PDGFB might 
play a role in only some specific cells. Therefore, both the 
osteoblast cell line and mesenchymal cells were selected 
for use in this study. The results showed that PDGFB 
indeed played a role in ADSCs but not in FOB1.19 cells. 
To further elucidate the underlying mechanism, RNA 
sequencing was performed. The results showed that the 
MAPK pathway (p-ERK) was activated in ADSCs by 
increasing the expression of GRB2. As in the hFOB1.19 
cells, PDGFB did not increase ALP protein expression 
and did not promote cell proliferation. We postulate that 
p-ERK is not activated by PDGFB in FOB1.19 cells, as 
p-ERK is well known to promote cell proliferation. The 
results also showed that the protein expression level of 
p-ERK remained unchanged after stimulation (data not 

shown). Interestingly, GRB2 protein expression was very 
low in FOB1.19 cells, but it slightly increased when the 
PDGFB concentration reached 60  ng/mL (Fig. S4C). 
Considering the above results, we suggest that as there 
was not sufficient GRB2 to bind to the SH2 domain of the 
PDGF receptor, PDGFB did not have an obvious impact 
on osteogenesis in osteoblasts. However, by performing 
RNA sequencing in FOB cells, we found that PDGFB 
promoted the ECM pathway and the expression of col-
lagen II and collagen III (Fig. S4B). It is well known that 
the overexpression of collagen-related genes has a patho-
genic role. Therefore, PDGFB might play a role in another 
aspect of osteoblasts.

For at least a decade, it has been widely reported that 
in AS patients, excessive fat metaplasia exists in the 
sacroiliac joints and spine [50, 51]. However, we do not 
know where these fats come from. The results of this 
study indicate that these fats might have a pathogenic 
role in bone formation. It has been demonstrated that 
PDGFB strongly promotes the chemotaxis and migration 
of ADSCs. Excessive PDGFB from preosteoclasts might 
attract more ADSCs from fat to the sacroiliac joints and 
spine and promote the differentiation of ADSCs into pre-
osteoblasts. PDGFB could then enhance ECM/collagen 
expression in preosteoblasts and accelerate bone forma-
tion (Fig.  6G). Therefore, targeting ADSCs and PDGFB 
might have lessened AS.

Limitations
Several limitations of this study need to be addressed. 
Firstly, the specific mechanisms of how PDGFB trig-
gered the GRB2-pERK-RUNX2 pathway were not com-
pletely identified. GRB2 was found to contain an SH2 
domain which is flanked by two SH3 domains [52, 53]. 
The SH2 domain recognizes the phosphotyrosine resi-
dues of activated EGFR, and the two SH3 domains 
bind to proline-rich sequences. Therefore, GRB2 can 
link EGFR and downstream signaling molecules (i.e., 
pERK), and may also link to PDGF [54]. In addition, the 
phosphorylation of ERK was reported to regulate skel-
etal development and bone formation [55]. As pERK is 
essential for bone formation, the interaction between 
GRB2 and pERK and how they interacted with RUNX2 

(See figure on next page.)
Fig. 4 PDGFB pathway regulation in ADSCs. A Volcano plot of RNA sequencing in ADSCs for the two groups (PDGF ( −) and PDGF ( +)). B 
Genes with differential expression in the MAPK pathway between the two groups. C Differential enrichment of phosphopeptides in ADSCs. 
MEK1, ERK1/2, and MKNK were identified as differentially phosphorylated in the MAPK pathway. D Gene and protein expression of GRB2 
after transfection with siGRB2. E, F Western blot of several key molecules in the GRB2-pERK-RUNX2 axis with/without the treatments of PDGFB 
and si-GRB2. G, H The mineralization ability of ADSCs with/without the treatments of PDGFB and si-GRB2. I, J Western blot of several key molecules 
in the GRB2-pERK-RUNX2 axis with/without the treatments of PDGFB and ERK inhibitor. K, L PDGFB activated the GRB2-pERK-RUNX2 axis 
in a dose-dependent manner. The gene and protein levels were compared by unpaired sample t-tests. *** P < 0.005, ** P < 0.01, * P < 0.05
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Fig. 4 (See legend on previous page.)
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were not fully discovered. The activation of the GRB2-
pERK-RUNX2 axis triggered by PDGFB warranted deep 
exploration. Second, the enhancement of the GRB2/p-
ERK/RUNX2 axis triggered by PDGFB was examined 
by normal human ADSCs, and the enhancement or the 
enhanced osteogenesis in ADSCs from AS patients was 

not identified and compared. However, Sungsin Jo et al. 
[25] have demonstrated that after PDGFB stimula-
tion, the mineralization ability of enthesis cells from AS 
patients was stronger than the healthy ones. In addition, 
although PDGFB affects the axis in ADSCs, it does not 
have such effects on BMSCs (data not shown), suggesting 

Fig. 5 Immunochemistry analysis of the spinal entheseal tissues of AS patients and traumatic injury patients. A Elevated expression of the PDGFB, 
GRB2, P-ERK, and RUNX2 in AS patients. B Relative positive area of target protein in the sections were quantified

(See figure on next page.)
Fig. 6 Osteoblastogenic effects of PDGFB. A Protein expression of GRB2 in FOB1.19 cells and ADSCs. Western blotting was performed 
under the same conditions (equal exposure time and dose). B Top pathway enrichment in the KEGG database in FOB1.19 cells. C Collagen 
expression of FOB1.19 in the two groups (PDGFB − , PDGFB +). D Relative protein level of collagen expression in FOB1.19 in the two groups 
(PDGFB − , PDGFB +). E, F Western blot of the collagen expression and RUNX2 with/without the treatments of PDGFB and si-RUNX2. G Possible 
mechanism of PDGFB pathogenesis in AS. The relative protein levels were compared by unpaired sample t-tests. * P < 0.05
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Fig. 6 (See legend on previous page.)
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its role in bone formation is limited to specific cell types 
and could not fully explain the mechanisms of new bone 
formation in AS.

Conclusions
In conclusion, PDGFB showed higher expression in AS 
patients and was correlated with the variation in syn-
desmophyte formation. PDGFB promoted the osteoblas-
togenesis of ADSCs by activating the GRB2/ERK/RUNX2 
pathway and enhanced the extracellular matrix of pre-
osteoblasts, which could contribute to heterotopic bone 
formation in AS patients. Targeting ADSCs and PDGFB 
may be a potential therapeutic strategy to ameliorate AS.
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