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Abstract 

Background PANoptosis represents a newly identified form of programmed cell death that plays a significant role 
in the autoimmune diseases. Rheumatoid arthritis (RA) is characterized by the presence of autoantibodies. Neverthe‑
less, the specific biomarkers and molecular mechanisms responsible for the apoptotic characteristics of RA remain 
largely uninvestigated.

Methods We utilized 8 synovial tissue RA datasets. We selected genes associated with PANoptosis from the Gen‑
eCard database. By employing the limma, WGCNA, and machine learning algorithms we identified core genes. We 
utilized consensus clustering analysis to identify distinct PANoptosis subtypes of RA. Boruta algorithm was employed 
to construct a PANoptosis signature score. The sensitivity of distinct subtypes to drug treatment was verified using 
an independent dataset.

Results The SPP1 emerged as the significant gene, with its elevated expression in RA patients. We identified two 
PANoptosis RA subtypes. Cluster 1 showed high expression of Tregs, resting dendritic cells, and resting mast cells. 
Cluster 2 exhibited high expression of CD4 memory T cells and follicular helper T cells. Cluster 2 exhibited a higher 
degree of sensitivity towards immune checkpoint therapy. Employing the Boruta algorithm, a subtype score 
was devised for 37 PANoptosis genes, successfully discerning the subtypes (AUC = 0.794), wherein patients with ele‑
vated scores demonstrated enhanced responsiveness to Rituximab treatment.

Conclusion Our analysis revealed that SPP1 holds potential biomarker for the diagnosis of RA. Cluster 2 exhibited 
enhanced sensitivity to immune checkpoint therapy, higher PANoptosis scores, and improved responsiveness to drug 
treatment. This study offers potential implications in the realm of diagnosis and treatment.
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Introduction
Rheumatoid arthritis is a prevalent chronic autoimmune 
disease characterized by synovial inflammation and joint 
cartilage destruction, resulting in joint deformity and 
disability [1–3]. Its global prevalence varies, with indus-
trialized countries exhibiting higher rates, potentially 
attributable to both environmental and genetic factors. 
Given its chronic nature, rheumatoid arthritis poses 
challenges in treatment and is commonly likened to an 
enduring malignancy, imposing substantial economic 
burdens on individuals and society. Presently, prevailing 
clinical interventions for RA encompass the utilization 
of nonsteroidal anti-inflammatory drugs (NSAIDs) and 
disease-modifying antirheumatic drugs (DMARDs). In 
light of the intricate nature of this ailment, certain inves-
tigations have endeavored to investigate diverse amal-
gamated therapeutic approaches [4, 5]. Nevertheless, 
specific medications employed for treatment may engen-
der diverse deleterious repercussions. Consequently, 
the management of RA patients necessitates customiza-
tion according to distinct disease subtypes, achieved by 
identifying individual RA subtypes through biomark-
ers and implementing meticulous pharmacotherapeutic 
regimens.

An expanding body of empirical evidence indicates a 
mounting significance of cell death in diverse human ail-
ments, encompassing cancer, autoimmune diseases, and 
neurodegenerative disorders [6–9]. PANoptosis, a phe-
nomenon of inflammation-triggered programmed cell 
death, commonly referred to as cellular suicide, encom-
passes apoptosis, necrosis, and associated cell death 
mechanisms, thereby concurrently initiating multiple cell 
death pathways, such as apoptosis, necrosis, and pyrop-
tosis. Consequently, it can be regarded as the most intri-
cate manifestation of cell death documented thus far. The 
pathogenesis of RA involves various molecular mecha-
nisms, including IL-17-mediated mitochondrial dysfunc-
tion leading to autophagic impairment and apoptosis of 
synovial fibroblasts [10]. Despite these findings, there is a 

notable dearth of studies investigating the role of PANop-
tosis in the pathogenesis of rheumatoid arthritis.

Hence, the objective of this study is to examine the 
biomarkers and molecular mechanisms linked to PAN-
optosis in patients with RA. Differential gene expres-
sion, weighted gene co-expression network analysis 
(WGCNA), and machine learning algorithms will be 
utilized to ascertain key diagnostic genes associated with 
PANoptosis, which will subsequently be validated in an 
independent cohort. Additionally, consensus clustering 
algorithms will be employed to identify potential sub-
types of PANoptosis among RA patients, and a scoring 
system for PANoptosis will be developed to distinguish 
these subtypes, thereby investigating their responsiveness 
to pharmaceutical interventions and variations in the 
immune microenvironment. Our research findings have 
the potential to contribute to the identification of effec-
tive PANoptosis diagnostic biomarkers and guide treat-
ment strategies for RA patients.

Materials and methods
Data collection and data preprocessing
We obtained four chip datas of synovial tissue from 
patients with RA and normal tissue from the GEO data-
base, specifically GSE12021, GSE55235, GSE55457, and 
GSE77298. The GSE77298 being the sole training set. 
Additionally, we collected four drug treatment chip data 
of RA synovial tissues from GSE172188, GSE45867, 
GSE24742, and GSE15602 to investigate the response 
of different subtypes to drugs. The specific informa-
tion for each chip is provided in Table  1. The original 
CEL files of all chip data were obtained and subjected 
to background adjustment, quantile normalization, and 
log transformation using the robust multi-chip average 
(RMA) algorithm, resulting in the generation of gene 
expression matrix files. To eliminate batch effects and 
combine the datasets, the "ComBat" function from the 
’sva’ package was employed. To identify the key diagnos-
tic gene, SPP1, associated with PANoptosis-Related RA, 

Table 1 The datasets employed in this study

Data set Subjects Experiment type Platforms Tissue Drug

GSE12021 12 RA vs 9 HC Expression profiling by array GPL96\GPL97 Synovial NA

GSE55235 10 RA vs 10 HC Expression profiling by array GPL96 Synovial NA

GSE55457 13 RA vs 10 HC Expression profiling by array GPL96 Synovial NA

GSE77298 16 RA vs 7 HC Expression profiling by array GPL570 Synovial NA

GSE172188 10 RA Expression profiling by array GPL570 Synovial Abatacept

GSE45867 10 RA Expression profiling by array GPL570 Synovial Methotrexate

GSE24742 12 RA Expression profiling by array GPL570 Synovial Rituximab

GSE15602 11 RA Expression profiling by array GPL570 Synovial Adalimumab
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we utilized GSE77298 as a training set and other datasets 
(GSE12021, GSE55235, GSE55457) as external independ-
ent validation sets to assess the differential expression 
and diagnostic performance of SPP1. In order to elimi-
nate any potential batch effect, we combined four data-
sets (GSE12021, GSE55235, GSE55457, and GSE77298) 
to identify the pan-apoptotic RA subtype.

Weighted gene co‑expression network analysis (WGCNA) 
for identifying RA‑related core genes
The R package WGCNA was utilized to construct a co-
expression network and ascertain co-expression modules 
associated with RA. Subsequently, the weighted adja-
cency matrix was transformed into a topological overlap 
matrix (TOM), and genes were hierarchically clustered 
based on dissimilarity (dissTOM = 1 − TOM) of the top-
ological overlap. Modules exceeding a gene count of 50 
were chosen employing the hierarchical clustering tree 
method. Genes exhibiting strong correlation with clinical 
features were extracted from these modules.

Analysis of differentially expressed genes
The limma package [11] was employed to conduct an 
analysis of differentially expressed genes (DEGs) between 
synovial tissue affected by RA and normal tissue. Genes 
meeting the criteria of |Log2fold change|> 1 and adjusted 
P-value < 0.05 were selected for filtering purposes. To 
visualize the DEGs, a volcano plot and heatmap were uti-
lized. By employing a screening criterion of a relevance 
score > 3 within the Genecards database, a total of 1324 
panptosis-related genes (comprising 1313 apoptosis 
genes, 11 necrosis genes, and 31 pyroptosis genes) were 
identified using the search terms "apoptosis", "necrop-
tosis", and "pyroptosis" [12]. To identify intersection 
genes, we took the intersection of module-specific genes 
obtained from WGCNA, DEGs, and apoptosis-related 
genes.

Protein–protein interaction analysis of PANoptosis‑related 
genes
The STRING database [13] was utilized to generate a 
protein–protein interaction (PPI) network for the inter-
secting genes, employing a minimum confidence score 
threshold of greater than 0.4. GeneMANIA, an online 
database, was employed to ascertain genes associated 
with a given set of input genes.

Gene function enrichment analysis
The R package "clusterProfiler" [14] and the online anal-
ysis tool Metascape [15] were employed for conducting 
GO and KEGG pathway enrichment analyses on differen-
tially expressed genes. Adjusted p-values < 0.05 were con-
sidered statistically significant.

Identification of disease‑related feature genes
Four machine learning algorithms, namely LASSO, SVM-
REF, Boruta, and RF, were employed collectively to ascer-
tain disease-related feature genes. LASSO, a regression 
analysis technique, was utilized for feature selection and 
regularization, with the objective of enhancing the pre-
dictive accuracy and interpretability of statistical models. 
SVM-RFE, an efficient feature selection approach, was 
employed to identify the optimal variables by eliminating 
feature vectors generated by SVM [16]. Boruta, a super-
vised classification feature selection method rooted in 
random forest, was employed to identify all pertinent fea-
tures for a classification task. The random forest classifier 
is an ensemble learning algorithm that constructs a deci-
sion tree ensemble by utilizing randomly selected train-
ing data and feature subsets.

Identification of PANoptosis‑related RA subtypes
In order to investigate potential PANoptosis subtypes 
in patients with RA, we employed the "ConsensusClus-
terPlus" package for unsupervised clustering [17]. The 
clustering process was conducted with specific settings, 
including a maximum of six clusters (maxK = 6), the 
PAM clustering algorithm, and the Euclidean correla-
tion method. To ensure clustering stability, we repeated 
the process for 1000 iterations. The evaluation criteria for 
each cluster involved the utilization of cumulative distri-
bution function (CDF) values and the incremental area 
under the CDF curve. The reliability of the clustering 
results was subsequently confirmed through the appli-
cation of principal component analysis (PCA). PCA was 
performed using the prcomp function.

Immune infiltration analysis
In order to assess the variations in immune features 
among different PANoptosis subtypes in patients with 
RA, the CIBERSORT algorithm [18] was employed to 
quantify the levels of infiltration by 22 immune cell types. 
Additionally, Spearman correlation analysis was con-
ducted to examine the relationship between feature genes 
and immune cells.

Construction of PANoptosis score for RA patients
To establish a PANoptosis score for RA patients, first, the 
Pearson correlation analysis was employed to categorize 
the 68 differentially expressed PANoptosis genes. Fur-
thermore, 68 differentially expressed PANoptosis gene 
values that were positively and negatively correlated with 
the cluster signature were termed as the signature gene 
A and B, respectively. Furthermore, the Boruta algo-
rithm was employed for the dimension reduction of the 
signatures A (31 genes) and B (6 genes), and principal 
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component 1 was extracted as the signature score by 
employing the PCA. The formula for calculating the fea-
ture score is as follows:

The term GeneScore refers to the PANoptosis score, 
which offers a partial representation of the overall apop-
tosis pattern associated with the disease.

Statistical analysis
All statistical analyses were performed using R version 
4.2.0 software. The Mann–Whitney U test was used to 
compare the expression differences between two groups, 
and a p-value or adjusted p-value less than 0.05 was con-
sidered statistically significant.

Results
Weighted gene co‑expression network construction 
and key module identification
An overview of the study can be found in Fig.  1. To 
identify module genes significantly associated with RA 
patients, a clustering analysis was conducted on a data-
set (GSE77298) consisting of 23 samples. The results of 
the clustering analysis were visualized through a sample 
clustering tree (Fig. 2A,B). With help from the "pickSoft-
Threshold" function, a signed network was constructed 
and the module eigengene expression was calculated 

GeneScore = PCA1.A − PCA1.B

with the aid of the "blockwiseModules" function. The 
determination of the optimal soft threshold power, which 
exhibits higher average connectivity (Connectivity refers 
to the number of nodes directly connected by a node), 
was achieved by setting the threshold at 6 when the coef-
ficient of determination  (R2) exceeded 0.85 (Fig.  2C). 
Furthermore, a module-clinical feature correlation heat-
map was generated, leading to the identification of a total 
of 13 modules. Notably, the red module (Model num-
ber = 11) exhibited a strong positive correlation with RA 
(r = 0.64, p = 0.001), while the blue module (Model num-
ber = 4) displayed a strong negative correlation with RA 
(r =  − 0.66, p = 6e − 04) (Fig.  2D). Therefore, we selected 
the genes from the red and blue modules for further 
analysis.

Identification of differentially expressed PANoptosis genes 
in RA
Through differential analysis, we finally identified 265 
upregulated genes and 267 downregulated genes in 
RA and HC tissues. The volcano plot and heatmap of 
differential genes are shown in Fig.  3A and B. To fur-
ther screen for signature genes, we took the intersec-
tion of genes from the two highest correlated modules 
in WGCNA, DEGs, PANoptosis-related genes from 
Genecards, resulting in 30 "Intersect genes" (Fig.  3C). 
GO enrichment analysis revealed that the 30 intersect 

Fig.1 Flow diagram of the study
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genes are mainly involved in positive regulation of 
phosphorylation, positive regulation of NF-kappaB 
transcription factor activity, positive regulation of lipid 
localization, and regulation of cysteine-type endopepti-
dase activity involved in apoptotic signaling pathway. 
KEGG enrichment analysis showed that the differential 
genes are mainly associated with lipid and atheroscle-
rosis and PI3KAkt signaling pathway (Fig.  3E,F). PPI 
network analysis revealed strong correlations between 
SPP1, CXCL8, MMP9, and TIMP1 (Fig. 3D).

Machine learning algorithms identify the target gene SPP1
To identify predictive factors for RA patients, we 
employed four machine learning algorithms to reduce 
the dimensions of 30 overlapping genes. The Boruta algo-
rithm selected a total of 19 genes, with SPP1 ranking first 
in importance (Fig.  4A). The support vector machine 
method identified 8 genes as important biomarkers for 
RA (Fig.  4B). The selection of 8 genes as feature vari-
ables yielded the optimal prediction performance, with 
a model accuracy of 0.84. This outcome suggests that 

Fig. 2 Construction of co‑expression network modules. A Sample clustering tree diagram. B Genes with similar expression patterns were clustered, 
different colors are different gene clusters, grey modules represent genes not assigned to any of the modules. C Optimal soft threshold power. D 
Heatmap of module‑trait correlations
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Fig. 3 Identification of differentially expressed PANoptosis‑related gene in RA patients. A Volcano plot of DEGs. B Heatmap of the DEGs. C Venn 
diagram of the intersection of DGEs, PANoptosis‑related gene and WGCNA significant module genes. D Protein–protein interaction network of 30 
Intersect Genes". E GO analysis of 31 intersect genes. F KEGG analysis of 30 intersect genes
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these 4 features can be considered as the most suitable 
subset for predicting RA. Using the LASSO algorithm, 
we discovered 6 genes that could serve as potential mark-
ers for RA (Fig. 4C,D). By applying the criterion of aver-
age reduction in mean decrease gini greater than 1, we 
employed random forests to select 8 genes, with SPP1 
also ranking first in importance (Fig.  4E). By taking the 
intersection of the feature genes from the four machine 
learning algorithms, we obtained two feature genes, 
namely SPP1 and PRKG1 (Fig.  4F). In the training set, 
we analyzed the expression of these two genes, as evi-
dent from the box plots, where SPP1 exhibited upregu-
lation in RA and PRKG1 showed downregulation, both 
with statistical significance (Fig.  4G,H). The receiver 
operating characteristic (ROC) analysis of the diagnostic 
effectiveness of the biomarkers revealed that both SPP1 
(AUC = 0.964) and PRKG1 (AUC = 0.964) had high diag-
nostic value for RA and HC groups (Fig.  4I,J). Further-
more, we validated the expression of these two genes in 
three independent external datasets. In GSE55235, SPP1 
expression was significantly elevated in RA compared to 
the normal group (P < 0.001). Although there was no sig-
nificant difference in the expression of SPP1 between RA 
and HC groups in GSE12021 and GSE55457, there was 
an upward expression trend, indicating a good diagnos-
tic value of this gene across the three datasets (Supple-
mentary Figure S1). The gene PRKG1 was not detected in 
other datasets. Therefore, SPP1 was selected as the core 
gene for further analysis in this study.

PANoptosis‑related molecular subtypes of RA
To identify PANoptosis-related molecular subtypes 
of RA, we merged four RA datasets and removed 
batch effects (Fig.  5A,B). Among the 72 differentially 
expressed PANoptosis genes in the merged expression 
profile, only 68 genes were expressed. We performed 
1000 iterations using the ’ConsensusClusterPlus’ R 
package, with the optimal number of clusters ranging 
from k = 2 to 6. Based on the cumulative distribution 
function (CDF) values and delta area, we recommend 
utilizing k = 2 clusters to ensure robust clustering 
results (Fig. 5C,D). Principal component analysis (PCA) 

plot and heatmap demonstrated significant differences 
between the two subtypes (Fig. 5E,F).

Next, we analyzed the differences in immune char-
acteristics between the two subtypes of RA based on 
the all gene expression profile. Immune cell infiltration 
analysis revealed that Cluster 1 exhibited high expres-
sion of Tregs, resting dendritic cells, and resting mast 
cells. Cluster 2, on the other hand, showed high expres-
sion of activated CD4 memory T cells, follicular helper 
T cells, and gamma delta T cells (Fig. 6A). We validated 
the correlation between the SPP1 gene and immune 
cells and found a positive correlation between SPP1 and 
Macrophages M0 (R = 0.52, P = 8.2e − 05) and Mast cells 
activated (R = 0.54, P = 4.5e − 05). SPP1 was negatively 
correlated with T cells CD4 memory resting (R =  − 0.3, 
P = 0.03), Macrophages M1 (R =  − 0.3, P = 0.03), rest-
ing dendritic cells (R =  − 0.47, P = 0.00058), and rest-
ing mast cells (R =  − 0.55, P = 2.4e − 05) (Fig.  6B). We 
analyzed the differentially expressed genes between the 
two subtypes, with the parameter set as logfc > 1 and 
adjusted p-value < 0.05. We identified a total of 170 dif-
ferentially expressed genes. GO enrichment analysis 
revealed that these genes were mainly enriched in pro-
cesses such as positive regulation of immune response, 
cell chemotaxis, and positive regulation of cell adhe-
sion (Fig. 6C). KEGG enrichment analysis showed that 
these genes were mainly involved in pathways such as 
cytokine-cytokine receptor interaction, hematopoietic 
cell lineage, PPAR signaling pathway, T cell receptor 
signaling pathway, and NF-kappa B signaling pathway 
(Fig. 6D).

We further analyzed the differences in common 
immune checkpoint expression between the two clus-
ters and found that Cluster 2 exhibited better sensitiv-
ity to immune checkpoint therapy. Specifically, it was 
characterized by higher expression of CD28 (encod-
ing T-cell-specific surface glycoprotein), CD40 (TNF 
Receptor Superfamily Member), CD27 (TNF receptor 
superfamily), CD86 (T-Lymphocyte Activation Anti-
gen), HLA-A, HLA-B, HLA-C, HLA-G, and HLA-F 
(HLA Class I Histocompatibility Antigen) (Fig. 7).

(See figure on next page.)
Fig. 4 Selection of feature genes and determination of target SPP1. A Boruta selection of 19 feature genes with importance ranking. Green 
represents important genes selected by Boruta algorithm after dimensionality reduction, blue represents shadowMax value, that is, the threshold 
value of importance score, and red represents unimportant genes after dimensionality reduction by Boruta. B SVM‑RFE selection of 8 feature 
genes. C Coefficients were calculated for each lambda. Each line represents a gene confidence value. D LASSO regression analysis of 6 genes. The 
horizontal axis represents the log value of the independent variable, while the vertical axis represents the partial likelihood deviance of the log 
value of each independent variable. E RF selection of 8 feature genes with importance ranking. F Venn plot of the overlapping genes identified 
through the four machine algorithms. G Expression of SPP1 in GSE77298. H Expression of PRKG1 in GSE77298. I ROC curve of SPP1 in GSE77298. J 
ROC curve of PRKG1 in GSE77298
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Construction and predictive value of PANoptosis score 
in patients with RA
To evaluate the pan-apoptotic modification pattern in 

RA patients, we utilized the Boruta algorithm to reduce 
dimensionality based on 68 differentially expressed PAN-
optosis genes. Using the PCA algorithm, we defined two 

Fig. 4 (See legend on previous page.)
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scores: Score A, consisting of 31 genes specifically associ-
ated with disease, and Score B, consisting of 6 genes spe-
cifically associated with a negative correlation to disease 
(Fig. 8A,B). We calculated the PANoptosis score for each 
RA patient. Rank sum test analysis revealed that cluster 
2 had a higher PANoptosis score compared to cluster 1 
(p = 7e − 04) (Fig. 8C). We used the PANoptosis score to 
predict different subtypes, and the area under the ROC 
curve indicated its high predictive value (AUC = 0.794) 
(Fig.  8D). The sensitivity and specificity of this score 
model were 0.73 and 0.94, respectively. We applied 
the PANoptosis score model to accurately assess the 
response to drugs in different subtypes. Using the median 
of the PANoptosis score as a threshold, patients were cat-
egorized into high or low PANoptosis score groups. To 
further understand the impact of the PANoptosis score 
on predicting drug response, we selected four independ-
ent synovial tissue sequencing samples from RA patients 
receiving drug treatments. In the GSE24742 dataset, 12 
patients were treated with Rituximab. We tested the dif-
ference in PANoptosis between responders and non-
responders to Rituximab and found that responders had 
higher PANoptosis scores (Fig. 8E, F). In GSE172188, 10 
RA patients received Abatacept treatment. In GSE15602, 
11 RA patients received Adalimumab treatment. In 
GSE45867, 12 RA patients received Tocilizumab treat-
ment, while 8 patients received Methotrexate treatment. 
However, these datasets did not reveal any differences 
in PANoptosis scores between responders and non-
responders (Supplementary Figure  S2). In summary, 
we found that RA patients with high PANoptosis scores 
showed a better response to Rituximab drug treatment.

Discussion
The etiology of RA is multifaceted, encompassing genetic, 
environmental, and immune components [19]. Emerg-
ing evidence indicates the significance of PANoptosis-
related genes in the pathogenesis of RA. Nevertheless, 
limited research has investigated the association between 
RA and PANoptosis through transcriptomics integra-
tion. This study primarily examined the expression pat-
terns of PANoptosis genes in RA, employing differential 
expression analysis, WGCNA, and diverse machine 
learning algorithms as fundamental screening method-
ologies to identify accurate and cost-effective diagnostic 

biomarkers for PANoptosis in RA patients. In this study, 
we conducted clustering analysis utilizing differentially 
expressed PANoptosis genes to identify two distinct 
PANoptosis subtypes in RA. Furthermore, we character-
ized the differences in the immune microenvironment 
between these subtypes and developed a PANoptosis 
subtype score. Additionally, we assessed the sensitivity 
of the different subtypes to various drug treatments. Our 
investigation also highlighted SPP1 as a potential signifi-
cant biomarker in RA.

We performed enrichment analysis of GO and KEGG 
on 30 overlapping genes, revealing their involvement in 
NF-kappaB transcription and regulation of cysteine-type 
endopeptidase activity, NF-kappaB transcription, regula-
tion of cysteine-type endopeptidase activity involved in 
the apoptotic signaling pathway, and Toll-like receptor 
binding. NF-κB, a nuclear transcription factor, plays a 
crucial role in cellular processes including cell prolifera-
tion, apoptosis, and differentiation [20]. Research indi-
cates that NF-κB downregulates miR-1276 expression 
by binding to its promoter, consequently enhancing the 
expression of microphthalmia-associated transcription 
factor and facilitating osteoclast differentiation [21]. 
Furthermore, FOXC1-mediated TRIM22 governs the 
excessive proliferation and inflammation of fibroblast-
like synoviocytes implicated in rheumatoid arthritis via 
the NF-κB signaling pathway [22]. The inhibition of cell 
proliferation and inflammation in RA synovial fibroblasts 
through the overexpression of miR-27a-3p, which targets 
Toll-like receptor 524, presents promising implications 
for the treatment of RA [23]. These pieces of evidence 
suggest a potential value of targeting the pan-apoptotic 
pathway for treating RA patients.

Previous studies have demonstrated the efficacy of 
machine learning algorithms in identifying sensitive 
diagnostic biomarkers for different diseases [24, 25]. In 
this particular study, we employed machine learning 
techniques to identify diagnostic biomarkers associated 
with the pan-apoptotic pathway in RA. Four machine 
learning algorithms, Boruta, LASSO, SVM-REF, and RF, 
were employed to select key genes, and SPP1 was con-
firmed to be an effective biomarker. SPP1, also referred 
to as osteopontin, is a prevalent extracellular matrix pro-
tein and pro-inflammatory cytokine that engages with 
integrin receptors on the cell surface, thereby promoting 

Fig. 5 Consensus clustering of PANoptosis‑related RA molecular subtypes based on 72 PANoptosis genes. A Scatter plots of PCA before removal 
of batch effects for the four data sets. B Scatter plots of PCA after removing batch effects by the combat function. C The consensus score matrix 
for RA samples when k = 2. D Consensus clustering cumulative distribution function (CDF) for k = 2–6, which can completely describe the probability 
distribution of a real random variable. E Principal components analysis showing the stability and reliability of clustering. F The distribution of 72 
PANoptosis‑related gene among two clusters

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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cell adhesion and communication [26]. The secre-
tion of SPP1 by fibroblast-like synoviocytes promotes 
osteoclast formation through the PI3K/AKT signaling 

pathway in collagen-induced arthritis [27]. In a recent 
study, Alivernini et  al. employed scRNA-seq technol-
ogy to characterize macrophages in the synovial tissue 

Fig. 6 Immune characteristics of the two PANoptosis subtypes in RA. A CIBERSORT analysis reveals the differences in immune characteristics 
between cluster A and cluster B subtypes. B Correlation analysis between the feature gene SPP1 and immune cells. C GO enrichment analysis 
of differentially expressed genes between the two subtypes. D KEGG enrichment analysis of differentially expressed genes between the two 
subtypes
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of patients with RA. The researchers discovered that 
synovial macrophages expressing SPP1/osteocalcin were 
more abundant in active RA cases and exhibited a posi-
tive correlation with disease activity. These macrophages 
displayed elevated levels of cytoskeletal proteins and 
integrins, indicating a migratory phenotype [28]. Steven 
et al. conducted an evaluation on the impact of SPP1 on 
the advancement of RA and discovered a significant cor-
relation between SPP1 rs11439060 and rs9138 variants 
and decreased serum OPN expression, suggesting their 
association with disease progression [29]. Additionally, 
previous literature has demonstrated that SPP1 secreted 

by RA synovial fibroblasts stimulates osteoclastogenesis 
through the PI3K/AKT signaling pathway [27]. These 
investigations emphasize the crucial role of the SPP1 
gene in RA. Using differentially expressed pan-apoptotic 
genes as a basis, we have successfully identified two dis-
tinct subtypes of RA.

We have developed a PANoptosis score to assess the 
responsiveness of these subtypes to drug treatments 
by leveraging existing datasets. Our findings indicate 
that patients with a high PANoptosis score demonstrate 
heightened sensitivity to immune checkpoint therapy and 
exhibit favorable responses to Rituximab treatment. CD28 

Fig. 7 Immune checkpoint analysis of two PANoptosis subtypes in RA
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Fig. 8 Illustrates the construction of the PANoptosis score model for RA patients. A Boruta algorithm used for gene dimensionality reduction. B 
Heatmap showing the expression of PANoptosis score genes between the two RA subtypes. C Boxplot showing the difference in PANoptosis scores 
between the two subtypes. D ROC curve for predicting subtypes using the PANoptosis score. E Boxplot showing the difference in PANoptosis scores 
between responders and non‑responders to Rituximab treatment. F Rituximab treatments respond to the RA subtypes
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and CD226 have been identified as potential risk factors 
for inflammatory arthritis due to their involvement in T 
cell co-stimulation [30]. The simultaneous inhibition of 
ICOS and CD28 signaling, achieved through the use of 
inhibitors like Acazicolcept, has proven effective in reduc-
ing inflammation and slowing the progression of RA and 
psoriatic arthritis (PsA) [31]. Variants in the CD40 locus 
have also been discovered to impact the development of 
inflammatory diseases, including RA [32, 33]. Abatacept, 
on the other hand, directly targets B cells by decreasing 
the expression of CD80/CD86, thereby offering a poten-
tial therapeutic approach for treating B cell-mediated 
autoimmunity [34]. Furthermore, our study indicates that 
the presence of HLA-related immune checkpoints, char-
acterized by elevated expression of HLA alleles in the high 
PANoptosis score group, may play a role in the develop-
ment of inflammatory arthritis, including RA, spondy-
loarthritis, and systemic juvenile idiopathic arthritis [35]. 
Additionally, Rituximab, by specifically targeting the 
CD20 antigen and inducing apoptosis in B lymphocytes, 
has demonstrated promising effectiveness in treating 
antibody-mediated rheumatoid arthritis [36, 37]. Con-
sequently, the pan-apoptotic gene-based score holds the 
potential to identify distinct subtypes and offer valuable 
insights for the management of RA.

Conclusion
In summary, our study employed a range of machine learn-
ing algorithms to identify the PANoptosis biomarker SPP1 
in RA patients, which was subsequently validated in an 
independent external dataset, demonstrating its elevated 
expression. Additionally, utilizing pan-apoptotic gene 
expression profiles, we have discerned two distinct sub-
types of RA and have elucidated the variances in immune 
cells, immune checkpoints, and immune pathways 
between these subtypes. Furthermore, we have developed 
a PANoptosis score model that demonstrates promising 
predictive capabilities in distinguishing between these sub-
types and may hold clinical significance in guiding medi-
cation decisions. These findings suggest that the identified 
genes may possess a pivotal role in the pan-apoptotic 
pathway in RA. Our study contributes to a more compre-
hensive comprehension of PANoptosis in RA, although 
further evidence is necessary to validate our findings.
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