
Rheumatoid arthritis and osteoarthritis: disease 

pathogenesis

Rheumatoid arthritis (RA) is a chronic infl ammatory 

disease characterized by the activation of synovial tissue 

lining the joint capsule, which results in the invasion of 

the cartilage and bone leading to the progressive joint 

dysfunction [1]. Severe morbidity and structural damage 

of joints caused by chronic infl ammation often lead to 

major personal, family, and fi nancial consequences, as 

well as increased mortality. Recent understanding of the 

RA pathogenesis has clarifi ed the role of cytokines and 

other infl ammatory mediators in this process and has 

provided a scientifi c rationale in the process of develop-

ing targeted therapies [2].

Osteoarthritis (OA) is a common disorder of synovial 

joints characterized pathologically by focal areas of 

damage to the articular cartilage, centered on load-bearing 

areas, which is associated with new bone formation at the 

joint margins (osteophytosis), changes in the subchondral 

bone, variable degrees of mild synovitis, and thickening 

of the joint capsule [3]. Th e severity of OA diff ers from 

patient to patient, but the very common clinical 

symptoms include pain, reduced range of motion, infl am-

mation, and deformity [4]. Th is condition is strongly age 

related, being less common before the age of 40 but 

showing a marked increase in frequency with age [3]. 

Although OA is considered the disease of the destruc tion 

of articular cartilage, recent evidence suggests that it may 

also damage bone and synovium in the arthritic joints 

[3,4]. Despite existing evidence of the crosstalk between 

tissues at the cellular and molecular levels, however, 

intertwined pathophysiological processes causing OA 

have reduced the focus in choosing from one of these 

three tissues – articular cartilage, bone, or synovium – to 

serve as the key therapeutic target [3].

Treatment of arthritis: approaches and options

Conventional disease-modifying anti-rheumatic drugs 

such as methotrexate have long been the mainstay of RA 

treatment and are still advocated as a fi rst-line option in 

newly diagnosed RA patients [5]. While a combination of 

good effi  cacy and acceptable toxicity, in conjunction with 

low cost and patient convenience, has made methotrexate 

an increasingly favored drug for RA, recent studies 

suggest that patients lose effi  cacy over time and only a 

minority of them achieve disease remission from its use 

[5]. TNFα inhibitors, as fi rst-generation biologics, have 

radically changed the treatment of patients with refrac-

tory RA. Among patients with RA who are unresponsive 

to methotrexate, however, only two-thirds respond to 

TNFα inhibitors – which opened the option of combi na-

tion therapy (combining disease-modifying anti-rheu-

matic drugs with biological therapy) [5,6]. As a result, 

newer approaches have resulted in the development of 

next-generation biologics during the past few years, 

including abatacept, rituximab, and tocilizumab [2,6].

Pharmacological management of OA includes analgesics 

and nonsteroidal anti-infl ammatory drugs. Unfortunately, 

these medications can precipitate severe adverse reactions 

while providing only symptomatic relief from pain and no 
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eff ect on the progress of OA in some patients [7]. In 

addition, increased rates of cardiovascular events asso-

ciated with cyclooxygenase-2 (COX-2) inhibitors and 

some conventional nonsteroidal anti-infl ammatory drugs 

have made the treatments inappropriate for long-term use 

by OA patients with high risk of heart disease or stroke [8]. 

More recent emerging data from clinical trials conducted 

over nine clinical centers in the United States underlined 

the clinical effi  cacy of a glucosamine and chondroitin 

sulfate combination on the progressive loss of cartilage, 

pain, and stiff ness in patients with knee OA [7].

Plant-derived molecules for the treatment of 

arthritis

Th e past decade or two have seen a dramatic increase 

and growing interest in the use of alternative treatments 

and herbal therapies by arthritis patients [9-11]. Trust-

worthy documentation of traditional knowledge, together 

with extensive modern scientifi c/pharmaco logical experi-

mentation, however, is necessary to validate or refute the 

purported medicinal value. In this regard, epigallo-

catechin-3-gallate (EGCG) has in the past decade been 

extensively evaluated by us and other researchers for its 

potential anti-rheumatic activity using in vitro experi-

men tations and animal models of arthritis. Th e following 

section of the present review highlights some of these 

major fi ndings and puts forward an argument for the 

future development of EGCG as a potential thera peutic 

entity for rheumatic diseases.

Epigallocatechin-3-gallate

Green tea (Camellia sinensis) is one of the most 

commonly consumed beverages in the world and is a rich 

source of polyphenols known as catechins (30 to 36% of 

dry weight) including EGCG, which constitutes up to 

63% of total catechins [12]. EGCG has been shown to be 

25 to 100 times more potent than vitamins C and E in 

terms of antioxidant activity [13]. A cup of green tea 

typically provides 60 to 125 mg catechins, including 

EGCG [14].

Effi  cacy of EGCG in arthritis

In vitro fi ndings

Cartilage/chondrocyte protection
Extensive studies in the past decade have verifi ed the 

cartilage-preserving and chondroprotective action of 

EGCG. We pioneered research in this therapeutic area 

and studied the benefi ts of EGCG on progressive carti-

lage degradation, a hallmark of OA, using chondrocytes 

derived from OA cartilage. Proinfl ammatory cytokines 

such as IL-1β, TNFα, and IL-6 have been shown to 

modulate extracellular matrix turnover, to accelerate the 

degradation of cartilage, and to induce apoptosis in 

chondrocytes [3,4].

Besides promoting imbalance between excessive carti-

lage destruction and cartilage repair processes, IL-1β has 

been a potent inducer of reactive oxygen species, 

including nitric oxide and infl ammatory mediators such 

as prostaglandin E
2
, via enhanced expression of the 

enzymes inducible nitric oxide synthase and COX-2, 

respectively [15,16]. Preincubation of human chondro-

cytes derived from OA cartilage at diff erent micromolar 

concentrations of EGCG showed a marked inhibition in 

the IL-1β-induced inducible nitric oxide synthase and 

COX-2 expression and activity, which further resulted in 

the reduced nitric oxide and prostaglandin E
2
 synthesis 

[15,16]. Defi ning the molecular mechanism of EGCG’s 

effi  cacy in regulating inducible nitric oxide synthase 

expression, the results showed that EGCG inhibits IL-1β-

induced phosphorylation and proteasomal degradation 

of IκBα to suppress NF-κB nuclear translocation [16].

In a follow-up study to determine the eff ect of EGCG 

on other signaling pathways triggered by IL-1β, Singh 

and colleagues showed that EGCG selectively inhibited 

the p46 isoform of c-Jun-N-terminal kinase induced by 

IL-1β [17]. Th is resulted in the reduced accumulation of 

phosphorylated c-Jun and activation protein-1 DNA 

binding activity, and of activation protein-1-mediated 

infl ammatory responses in OA chondrocytes.

Under normal circumstances, chondrocytes in the 

cartilage make extracellular matrix components such as 

aggrecan and type II collagen as required in response to 

mechanical pressure [3]. Under abnormal or diseased 

conditions, however, chondrocyte metabolism is altered 

under the infl uence of the increased infl ux of pro infl am-

matory cytokines that activate matrix-degrading enzymes 

termed matrix metalloproteinases (MMPs) and of reac-

tive mediators that promote cartilage degradation [18]. 

MMPs are a large group of enzymes that play a crucial 

role in tissue remodeling as well as in the destruction of 

cartilage in arthritic joints due to their ability to degrade a 

wide variety of extracellular matrix components [19,20]. 

Interestingly, the collagenases among the MMP family 

are of particular importance in joint disorders due to 

their ability to effi  ciently cleave type II collagen [19,20].

In another study, we evaluated the potential of EGCG 

to protect human cartilage explants from IL-1β-induced 

release of cartilage matrix proteoglycans and the induc-

tion and expression of MMP-1 and MMP-13 in human 

chondrocytes [21]. Our results showed that EGCG 

pretreatment of cultured human OA chondro cytes 

signifi cantly inhibited the expression and activities of 

MMP-1 and MMP-13 in a dose-dependent manner [21]. 

In a parallel observation, another study found that 

catechins from green tea inhibited the degradation of 

human cartilage proteoglycan and type II collagen, and 

selectively inhibited ADAMTS-1, ADAMTS-4, and 

ADAMTS-5 [22,23]. Further evaluation of the eff ect of 
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EGCG on the anabolic pathways in chondrocytes showed 

that EGCG ameliorates IL-1β-mediated suppression of 

transforming growth factor β synthesis, and enhances 

type II collagen and aggrecan core protein synthesis in 

human articular chondrocytes [24]. Th ese results were 

further supported by a recent study showing the protec-

tive eff ect of EGCG on advanced glycation end product-

induced MMP-13 production in human OA chondro-

cytes in vitro [25].

To further support the chondroprotective eff ects of 

EGCG in arthritis, a recent study conducted by the 

biomaterial testing group on collagen showed that 

collagen preincubated with EGCG demonstrated a 

remark able resistance against degradation by bacterial 

collagenase and MMP-1 [26]. A circular dichroism 

spectral analysis of the triple-helical structure of EGCG-

treated collagen and untreated collagen showed a higher 

free-radical scavenging activity in EGCG-treated collagen 

[26]. Recent studies evaluating the cartilage-preserving 

property of EGCG showed that articular cartilages, 

preserved in a storage solution containing EGCG for up 

to 4 weeks, showed a higher degree of chondrocyte 

viability and proteoglycan (GAG) content of the extra-

cellular matrix, at least in part, by reversibly regulating 

the cell cycle at the G
0
/G

1
 phase and NF-κB expression 

[27,28]. Th ese fi ndings provide a scientifi c rationale for 

the effi  cacy of EGCG in protecting cartilage breakdown 

during the progress of joint disorders and could be 

utilized in other chronic ailments where integrity of the 

collagen is compromised in tissue destruction or 

remodeling.

Bone-preserving activity
In rheumatic diseases, loss of the intricate balance 

between bone formation and bone resorption activity 

leads to skeletal abnormalities that aff ect the quality of 

life [29]. In particular, three TNF family molecules – the 

receptor activator of NF-κB, its ligand RANKL, and the 

decoy receptor of RANKL, osteoprotegerin – have estab-

lished their pivotal role as central regulators of osteoclast 

development and osteoclast function [29]. In 2006 Hafeez 

and colleagues showed that green tea poly phenols 

triggered caspase-3-dependent apoptosis in these cells by 

regulating the constitutively active NF-κBp65 to induce 

DNA fragmentation and apoptosis in osteocarcoma 

SaOS-2 cells [30]. Another recent study using human 

osteoblastic cells evaluated the eff ect of EGCG on 

oncostatin M-induced monocyte chemotactic protein-1 

(MCP-1)/CCL2 synthesis [31]. Th e experi men tal fi ndings 

of the study suggested that EGCG inhibits oncostatin M-

induced MCP-1/CCL2 synthesis in human osteoblastic 

and MG-63 cells by reducing c-Fos synthesis [31].

IL-6 – produced by both stromal cells and osteoblasts 

in response to several stimuli such as lipopolysaccharides, 

IL-1β, and TNFα – stimulates bone resorption and osteo-

clast formation [32,33]. Th e effi  cacy of EGCG was 

evaluated against basic fi broblast growth factor-2-

induced IL-6 synthesis in osteoblast-like MC3T3-E1 cells 

[34]. EGCG inhibited basic fi broblast growth factor-2-

induced IL-6 synthesis dose dependently and, in part, via 

suppression of ERK1/2 and p38 mitogen-activated 

protein kinase pathways in osteoblast cells [34]. Further 

extending these fi ndings, a recent study by Kamon and 

colleagues showed that EGCG reduced osteoclast 

formation in these cells by inhibiting osteo blast diff er-

entiation without aff ecting their viability and prolifera-

tion [35]. Another recent study addressing the precise 

molecular mechanism through which EGCG inhibits 

osteoblast diff erentiation showed that EGCG produced 

an anti-osteoclastogenic eff ect by inhibiting RANKL-

induced activation of c-Jun-N-terminal kinase and NF-

κB pathways, thereby suppressing the gene expression of 

c-Fos and NFATc1 in osteoclast precursors [36].

Regulation of synovial fi broblast activity
Under normal physiological conditions, synovial fi bro-

blasts form a thin lining of synovial tissue surrounded by 

the fi brous capsule of the joint. Th e lining of synovial 

fi broblasts secretes synovial fl uid, which has both lubri-

cat ing and immunomodulatory properties, and which 

promotes normal joint function. In diseased conditions 

such as RA, synovial fi broblasts in the RA synovium 

become hyperproliferative and secrete factors that 

promote infl ammation, neovascularization, and cartilage 

degradation.

In response to cytokines produced by macrophages 

such as TNFα and IL-1β, RA synovial fi broblasts secrete 

matrix-degrading enzymes such as MMPs, ADAMTS, 

and cathepsins. MMPs released from RA synovial 

fi broblasts can modulate activity of cytokines and 

chemo kines, release proapoptotic ligands from cell sur-

faces, and promote fi broblast invasion of the cartilage. 

RA synovial fi broblasts also attract leukocytes by expres-

sing chemokines in response to cytokines via distinct 

signaling pathway, which provides an opportunity to 

target them for diff erent therapeutic approaches.

We and other workers have extensively evaluated the 

effi  cacy of EGCG using the synovial fi broblasts isolated 

from human joints to provide the exact mechanism 

through which EGCG inhibits or suppresses arthritis. 

Our study showed that EGCG pretreatment signifi cantly 

inhibited both the constitutive and IL-1β-induced chemo-

kine MCP-1/CCL2 production, regulated upon activa-

tion, normal T-cell expressed and secreted (RANTES/

CCL5) production, growth-regulated oncogene (Gro-α/

CXCL1) production, and epithelial neutrophil-activating 

peptide 78 (ENA-78/CXCL5) production, and MMP-2 

activation by RA synovial fi broblasts [37]. Th is was 
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achieved by EGCG via selective inhibition of the IL-1β-

induced protein kinase Cδ and NF-κB pathways. One 

step further, we found that EGCG signifi cantly inhibited 

MMP-2 activity induced by RANTES/CCL5, Gro-α/

CXCL1, and ENA-78/CXCL5, suggesting a novel 

mechanism of MMP-2 regulation by EGCG in RA 

synovial fi broblasts [37]. In our follow-up study, we 

observed a similar inhibitory eff ect of EGCG-containing 

green tea extract (GTE) on chemokine synthesis in RA 

synovial fi broblasts [38]. GTE preincubation surprisingly 

induced the basal and IL-1β-induced chemokine receptor 

expression in these cells, however, which was also 

mimicked by the protein kinase Cδ inhibitor, Rottlerin 

[38]. Further studies are underway to clarify the 

signifi cance of these fi ndings in relation to GTE’s anti-

arthritic property.

It has also been shown that EGCG was eff ective in 

inhibiting IL-1β-induced MMP-1, MMP-3, and MMP-13 

in human tendon fi broblasts [39]. Synovial fi broblast IL-6 

production has been shown to inhibit bone formation 

and to concomitantly stimulate bone resorption and 

pannus formation [40]. In this regard, we showed in our 

recent study that EGCG pretreatment inhibits IL-1β-

induced IL-6 and vascular endothelial growth factor 

synthesis in RA synovial fi broblasts [41]. In a recent 

study, Yun and colleagues showed that EGCG treatment 

resulted in dose-dependent inhibition of TNFα-induced 

production of MMP-1 and MMP-3 at the protein and 

mRNA levels in RA synovial fi broblast by inhibiting 

activation protein-1 DNA binding activity [42].

In RA, the purposeful induction of apoptosis in activated 

synovial fi broblasts has emerged as a thera peutic strategy 

for halting deleterious tissue growth [1]. Th e constitutive 

activation of survival protein Akt and NF-κB in RA 

synovial fi broblasts makes these cells resis tant to both 

TNFα-mediated and Fas-mediated apoptosis [43,44]. In 

recent years, studies have linked the over expression of the 

anti-apoptotic myeloid cell leukemia-1 (Mcl-1) protein as a 

major cause of RA synovial fi broblast resistance to 

apoptosis [1,45]. Our recent study to evaluate the effi  cacy 

of EGCG in downregulating Mcl-1 expression showed 

that, in RA synovial fi broblasts, EGCG inhibits constitutive 

and TNFα-induced Mcl-1 protein expression [46]. 

Importantly, EGCG specifi cally abrogated Mcl-1 

expression in RA synovial fi broblasts and aff ected Mcl-1 

expression to a lesser extent in OA synovial fi broblasts, 

normal synovial fi broblasts, and endo thelial cells. In this 

study, caspase-3 activation by EGCG also suppressed RA 

synovial fi broblast growth, and this eff ect was mimicked 

by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degrada-

tion by EGCG sensitized RA synovial fi broblasts to TNFα-

induced cleavage of poly ADP-ribose poly merase protein 

and apoptosis. Our fi nding suggests that EGCG may 

selectively induce apoptosis and further sensitize RA 

synovial fi broblasts to TNFα-induced apoptosis to regulate 

their invasive growth in RA.

Animal studies

Collagen-induced arthritis
Th e potential disease-modifying eff ect of EGCG on 

arthritis was fi rst discovered in a study in which the 

consumption of EGCG-containing GTE in drinking 

water ameliorated collagen-induced arthritis (CIA) in 

mice [47]. Th e reduced CIA incidence and severity was 

refl ected in a marked inhibition of the infl ammatory 

mediators COX-2, IFNγ, and TNFα in arthritic joints of 

green tea-fed mice. Additionally, total immunoglobulins 

(IgG) and type II collagen-specifi c IgG levels were found 

to be lower in serum and arthritic joints of green tea-fed 

mice [47].

Interestingly, some recent pharmacological studies 

using EGCG or green tea to suppress arthritis have 

focused equally on bone resorption observed in RA 

[31,48-51]. A recent study by Morinobu and colleagues 

showed that EGCG treatment reduced bone resorption 

as determined by tartrate-resistant acid phosphatase-

positive multinucleated cells, bone resorption activity, 

and osteoblast-specifi c gene expression of the transcrip-

tion factor NF-ATc1, but not of NF-κB, c-Fos, and c-Jun 

[49]. Th e in vivo eff ect of osteoclast diff erentiation in CIA 

mice was not clear, however, as intraperitoneal adminis-

tration of EGCG (20 mg/kg) inhibited infl ammation in 

experimental arthritis [49]. Using in vivo testing con-

ducted in mouse CIA model, another study showed that 

EGCG (20 mg/kg, intraperitoneally daily) ameliorated 

arthritis and macrophage infi ltration, and caused a 

reduction in the amount of MCP-1/CCL2-synthesizing 

osteoblasts [31].

Adjuvant-induced arthritis
Recent advances in understanding the pathogenic eff ects 

of IL-6 provide evidence of its central role in promoting 

acute infl ammation [32,33]. Further studies related to the 

mechanisms through which EGCG inhibits infl ammation 

and tissue destruction in RA were studied by us and 

others. Our novel fi ndings showed that EGCG selectively 

inhibits IL-6 synthesis in rat adjuvant-induced arthritis, 

thus providing a missing link to the reduction in infl am-

mation observed in earlier studies [41]. Administration of 

EGCG (100 mg/kg, intraperitoneally daily) during the 

onset of arthritis in rats resulted in a specifi c inhibition of 

IL-6 levels in the serum and joints of EGCG-treated 

animals. Our study also showed that EGCG enhances the 

synthesis of soluble gp130 protein, an endogenous 

inhibitor of IL-6 signaling and trans-signaling [41]. Th e 

inhibition of arthritis in EGCG-treated rats correlated to 

the reduction in MMP-2 activity in the joints compared 

with the activity level in arthritic rats [41].
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A recent study testing a possible immunomodulatory 

activity of GTE in arthritis showed that GTE adminis-

tration in drinking water ameliorated rat adjuvant-

induced arthritis via the inhibition of serum IL-17 levels, 

with a concomitant upregulation of serum IL-10 levels 

[52]. In our recent study, a daily per oral adminis tration 

of GTE (200 mg/kg) modestly ameliorated rat adjuvant-

induced arthritis, which was accompanied by a decrease 

in MCP-1/CCL2 and GROα/CXCL1 levels and enhanced 

CCR-1, CCR-2, CCR-5, and CXCR1 receptor expression 

in the joints of GTE-administered rats [38]. Th is suggests 

that chemokine receptor overexpression with reduced 

chemokine production by GTE may be one potential 

mechanism to limit the overall infl ammation and joint 

destruction in RA. Further studies may be designed to 

improve the clinical outcome in animal models of RA 

through modifi cation of the dose and frequency of GTE 

administration, which may provide a better outcome and 

benefi ts of GTE in RA.

Clinical studies

Th e effi  cacy of EGCG or GTE in human RA or OA using 

the phase-controlled trials is yet to be tested. Several 

phase I and phase II cancer chemoprevention trials, 

however, have been performed using EGCG or GTE. A 

study by Elmets and colleagues showed that EGCG 

provided photoprotection to the skin from ultraviolet 

radiation on topical application in healthy human 

volunteers [53]. In another study, patients suff ering from 

chronic lymphocytic leukemia showed an improvement 

in their clinical, laboratory, and radiographic outcomes 

and objective responses [54] after oral ingestion of 

EGCG. Th e results of a recent open-label, phase II 

clinical trial using EGCG in prostate cancer patients 

showed a signifi cant decrease in the serum levels of 

prostate-specifi c antigen, hepatocyte growth factor, and 

vascular endothelial growth factor after 6 weeks of 

treatment [55]. A phase I trial on EGCG, with a 400 to 

2,000 mg dose taken by mouth twice a day for month, 

was well tolerated by chronic lymphocytic leukemia 

patients, the majority of whom showed a decline in 

lymphocyte count and lymphadenopathy [56]. Th is has 

encouraged the investigators of the study to initiate a 

phase II trial to evaluate EGCG effi  cacy using a 2,000 mg 

dose twice daily [56].

Th e effi  cacy of EGCG in human metabolic disorders 

has been a topic of clinical interest. A randomized, 

controlled clinical trial using EGCG on insulin resistance 

and associated metabolic risk factors in obese men 

showed that 400 mg EGCG treatment twice daily for 

8  weeks showed no eff ect on insulin sensitivity or 

secretion and glucose tolerance, but caused a moderate 

reduction in blood pressure and a positive eff ect on 

mood [57]. In another study by Maki and colleagues, the 

consumption of 625  mg EGCG-containing catechins 

daily for 12  weeks caused a greater loss of body weight 

and a decrease in the fasting serum triglyceride levels in 

the catechin-administered group [58]. In a double-blind, 

placebo-controlled trial, intake of GTE (containing 

302  mg EGCG) for 12  weeks showed a signifi cant 

reduction in the levels of low-density lipoprotein and 

triglyceride, and markedly increased the high-density 

lipoproteins and adiponectin levels [59].

EGCG: bioavailability and possible drug 

interactions

Pharmacokinetics of EGCG

Th e pharmacokinetics and bioavailability of EGCG in 

rodents and humans is well studied. An acute and short-

term toxicity study on EGCG preparations showed that 

the dietary consumption of EGCG by rats for 13 weeks 

was nontoxic at doses up to 500 mg/kg/day [60]. A study 

by Chen and colleagues showed that administration of 

pure EGCG or EGCG in the form of decaff einated GTE 

to rats via intravenous or intragastric administration 

showed diff erences in the pharmacokinetic patterns, 

favoring the intravenous route when given as an extract 

[61]. Studies also revealed that EGCG possesses a longer 

half-life and a smaller clearance rate, suggesting a slower 

rate of elimination of EGCG as compared with 

epigallocatechin and epi catechin [61]. A study by Kim 

and colleagues, in which subjects consumed GTE at 0.6% 

in drinking water over 28 days, showed that EGCG is 

more available in free form as compared with other 

catechins [62]. Th ese studies also showed that the highest 

concen tration of EGCG was found in the large intestine, 

suggesting a higher absorption rate but less clearance – 

as demonstrated by the lower levels of EGCG detected in 

plasma and distributed in the kidney, liver, lungs, and 

prostate of rats [61,62]. In contrast to the results with 

rats, however, the level of EGCG in mice was much 

higher than that of epigallocatechin and epicatechin, 

suggesting a high bioavailability of EGCG in mice [62]. In 

addition, it was reported that the intraperitoneal 

administration of green tea containing EGCG showed 

much higher tissue and plasma concentration of EGCG 

than that obtained intragastrically [62]. Although other 

chemical processes such as peracetylation and glucuroni-

dation have been shown to enhance the bioavailability of 

EGCG, not much is known about the distribution and its 

bioactivity in diseased conditions.

In humans, EGCG has been extensively studied for its 

acute and long-term toxicity studies [63-66]. A standard-

ized capsule of polyphenon E containing 400 mg, 800 mg, 

or 1,200  mg EGCG was used to study the pharmaco-

kinetics of EGCG in humans [63,64]. Th e pharmaco kinetic 

analysis from the study showed that the average plasma 

area under the curve, the maximum concentration, and 
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the half-life increased with an increase in the dosages 

given in the capsules of 400  mg, 800  mg, and 1,200  mg 

EGCG [64]. Th is study also showed that administration 

of EGCG capsules to human subjects under fasting 

conditions signifi cantly enhanced the pharmacokinetic 

profi le and bioavailability of EGCG, possibly due to 

reduced conversion by glucuronidation process [64]. A 

4-week clinical study carried out to determine the safety 

and pharmacokinetics of EGCG at doses of 400 and 

800 mg/day in healthy participants showed no signifi cant 

adverse eff ects, and investigators observed a signifi cant 

(>60%) increase in EGCG bioavailability by the 

800 mg/day dose, when compared with the 400 mg/day 

dose, in these participants [63]. Th ere are, however, 

limited numbers of studies suggesting that the EGCG 

plasma concentration may reach up to ~1  μM when 

consumed by drinking green tea [67,68]. Further studies 

are required to optimize the circulating and synovial 

concentrations of EGCG to avail benefi ts similar to those 

observed in vitro and in preclinical studies.

Drug interaction

Th ere have been limited data available to validate or 

reject the potential benefi t of EGCG in RA patients. 

Studies conducted recently, however, evaluate the effi  cacy 

of EGCG in combination with conventional medicine, 

which could be extrapolated for possible interaction with 

anti-rheumatic drugs. Th e initial observation came from 

the anti-cancer studies using EGCG, wherein the 

administration of EGCG was shown to enhance the 

apoptosis-inducing property of COX-2 inhibitors on the 

growth of human prostate cancer cells in vitro and in vivo 

[69]. In another related study, EGCG sensitized human 

prostate carcinoma LNCaP cells to TNF-related apoptosis-

inducing ligand-induced apoptosis and synergistic 

inhibition of the biomarkers of angiogenesis and meta-

stasis [70]. Similar outcomes on the sensitization of RA 

synovial fi broblasts for TNF-related apoptosis-inducing 

ligand-induced apoptosis were observed with trichostatin 

A, suggesting a common mechanism of regulating 

invasive growth of synovial tissue in RA [71].

Another unique mechanism through which EGCG 

leaves a positive impact as a potential therapeutic option 

comes from its property of inducing pretranscriptional 

modifi cation, termed alternative splicing. In addition to 

our study, where EGCG enhanced the synthesis of soluble 

gp130 at least in part by this mechanism, recent reports 

suggest that EGCG modulates alternative splicing to 

correct mutated proteins to normal forms, as observed 

for survival motor neuron-1 protein in neurodegenerative 

disorder, or to produce spliced variants of Mcl-1 and Bcl-

X proteins in combination with ibuprofen that may 

inhibit the functionality of these anti-apoptotic proteins 

in prostate cancer cells [41,72,73]. More recently, 

confl icting results have emerged from the studies related 

to the eff ect of EGCG on clinical effi  cacy of the 

chemotherapeutic agent Bortezomib as a proteasome 

inhibitor in cancer-related studies [74,75]. More 

elaborative and rigorous studies are awaited, however, to 

verify the possible interaction of EGCG with current 

treatment modalities for rheumatic diseases – in 

particular, biological therapies and metho trexate 

treatment.

Development of synthetic analogs of EGCG: future 

implications

Th e growing interest of pharmacologists in studying 

EGCG was never hidden from medicinal chemists, which 

led to the development of synthetic analogs of EGCG 

[76]. Zaveri and colleagues reported the synthesis of a 

trimethoxybenzoyl ester (D-ring) analog of EGCG, which 

was found to be equally as potent as natural EGCG for its 

effi  cacy as an anti-carcinogenic agent [77]. In addition, 

there have been some recent eff orts to enhance its 

bioavailability by delivering EGCG using lipid nano-

capsules and liposome encapsulation, suggesting the 

possibility of this molecule being developed further by 

medicinal chemists [78]. In this direction, there has been 

a successful in vitro and in vivo testing of delivering 

EGCG in polylactic acid–polyethylene glycol nano-

particles to inhibit angiogenesis and induce apoptosis 

[79]. Similarly, the results from a recent study suggest 

that nanolipidic EGCG particles signifi cantly improved 

the neuronal α-secretase enhancing ability and possessed 

the oral bioavailability more than twofold over free 

EGCG for the treatment of Alzheimer’s disease [80].

Conclusions and future implications

Th e present review summarizes the translational research 

for the validation of the purported benefi ts of EGCG in 

preclinical and clinical settings. An extensive evaluation 

of the potential risks or benefi ts of using EGCG alone or 

together with anti-rheumatic drugs may open a new area 

of research wherein EGCG or its synthetic analogs could 

be developed to enhance its clinical appeal. Extensive 

research on the benefi ts of EGCG in other chronic 

ailments such as carcinogenesis and cardiovascular 

diseases using clinical trials has shown promise [81,82]. 

With the availability of the safety profi le and 

pharmacokinetics of EGCG in phase I trials in humans, 

the window of opportunity is even wider to test EGCG 

for its potential therapeutic effi  cacy as an anti-rheumatic 

entity in human RA or OA. In conclusion, for the 

scientists and clinicians in the research area of drug 

discovery, EGCG represents a much safer molecule 

worth testing in humans, as the positive outcomes of 

such studies may have potential for its rapid clinical 

development and application.
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