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Abstract

During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty
acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle,
liver, and bone) are highly important because these factors are needed by an energy-consuming immune system
in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived
infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction
of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage
hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth
factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and
osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol
(breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention),
noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water
retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland
hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin Il (induce insulin resistance
and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on,
leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild
hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone
system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing
changes contribute to increased mortality in chronic inflammatory diseases.

Introduction
Two questions are asked with respect to the ‘interaction
of the endocrine system with inflammation’: (a) How does
inflammation influence the endocrine system, and does it
influence disease? (b) How do hormones influence inflam-
mation and immune cells? Both questions have been ex-
tensively addressed over the last decades (for example,
[1-3]). Most often, the two questions were posed inde-
pendently of each other. A theory to integrate both ques-
tions has recently been demonstrated in the context of
chronic inflammation considering rheumatic diseases.
This theory explains neuroendocrine changes in chronic
inflammatory diseases (CIDs) on the basis of three pillars:
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(i) energy-rich fuel allocation is important for an activated
immune system [4,5], (ii) increased activity of the water
retention system accompanies energy allocation to the im-
mune system [6], and (iii) evolutionary medicine explains
that these inflammation-driven energy expenditure pro-
grams were positively selected for acute but not chronic
systemic inflammation, and chronic use of these programs
is highly unfavorable [7]. The platform of the theory is
based on the fact that brain, muscle, and immune system
use similar amounts of energy-rich fuels (Figure 1). This
circumstance necessitates precise regulation of energy-
rich fuel allocation to these three systems (Figure 2). The
theory says that the activated immune system is the inde-
pendent stimulus of the observed endocrine and neuronal
changes in inflammation as part of an energy re-allocation
program.
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Figure 1 The three big energy consumers in the body use approximately 2,000 kJ/day under resting conditions. Calculation of energy
expenditure for the widespread immune system is based on a recent publication that mentions 1,600 kJ/day [4]. Growth-related phenomena in
adults are added to this number with 400 kJ/day. A demand reaction for energy-rich fuels (pink circular ring) can be started by one of ‘the big
three’ mainly using cytokines and hormones, one of which is interleukin-6 (IL-6). The immune system is activated by external triggers such as
infectious agents or self-antigens in misguided autoimmunity and thus is independent of the two other big consumers in starting the demand
reaction. The brain is activated by external triggers (for example, stressful life events) or by misguided brain function (for example, major depression),
and the brain is independent in starting the re-allocation program. An activated muscle demands energy-rich fuels by releasing muscular factors such
as IL-6. The muscle is dependent on brain function to start the energy demand reaction. Whereas immune system activation and growth-related
processes happen mainly at night, brain function and muscular function are increased during the day (indicated by the moon and the sun symbols).

Since aging, chronic psychological stress, and mental
illnesses are also accompanied by chronic smoldering in-
flammation (such as in CID), many aspects apply to age-
and stress-related diseases and mental illness. Chronic
smoldering inflammation in humans is already estab-
lished with elevations of serum IL-6 from normal levels
of 1 pg/mL to approximately 10 to 100 pg/mL of serum
IL-6, leading to an increase of resting metabolic rate in
healthy volunteers [8]. The observable increase of in-
flammatory cytokines at relatively low serum levels can
induce a re-allocation program of energy-rich fuels di-
rected toward the activated immune system. This is con-
firmed by studies that describe a close interrelation of
slightly elevated serum levels of C-reactive protein (IL-6-
dependent) and a key element of the energy re-allocation
program, namely insulin resistance [9,10].

The review starts with the description of energy stor-
age and energy expenditure hormones. Then, this review
briefly summarizes major effects of these hormones on
the immune system/inflammation. Finally, it demon-
strates changes of these hormonal systems observed in
CIDs and consequences thereof. This review deals with

energy regulation on a systemic level but not with the
question of cellular bioenergetics and ATP generation,
which was addressed in a recent publication in the con-
text of rheumatic diseases [5].

Energy storage hormones

Under normal conditions without activated brain, muscle,
or immune system and with undisturbed food intake,
energy-rich fuels are stored in specialized organs (adipose
tissue, muscle, liver; approximately 560,000 k] in an 86-kg
person; we need 10,000 kJ/day in our sedentary way of
life [6]). Under resting conditions and high food supply,
energy storage usually outweighs energy expenditure.
Under natural conditions in the wild, the situation is
balanced in that storage and expenditure are similar (for
example, [11]). The following neuroendocrine factors
are important for storage.

Insulin and insulin-like growth factor-1

Insulin is the major hormone responsible for uptake of
energy-rich substrates into liver, muscle, and adipose tis-
sue when there is no insulin resistance. It is stimulated


http://arthritis-research.com/content/16/1/203

Straub Arthritis Research & Therapy 2014, 16:203
http://arthritis-research.com/content/16/1/203

Page 3 of 15

external

ade sj¢
of e
resources 6 S

l insulin

IGF-1

osteocalcin

testosterone

IGF-1
testosterone
estrogens
DHE
ASD )
'y /\ r Vit.D
Ca I‘ P b7
\ /
trigylcerides
fat tissue bone

sympathetic nervous system
hypothalamic-pituitary-adrenal axis
hypothalamic-pituitary-thyroid axis
renin-angiotensin-aldosterone system
loss of storing hormones

allocation to consumers

Figure 2 Storage and release of energy-rich fuels. Green factors are responsible for storage of energy-rich fuels given in the green bowl. Red
factors are relevant for release of energy-rich fuels and allocation to consumers. Storage organs are given (liver: 2,500 kJ as glycogen; muscle:
50,000 kJ as degradable protein; fat tissue as triglycerides: 500,000 kJ; values for an 85-kg person). ASD, androstenedione; Ca, calcium; DHEA,
dehydroepiandrosterone; IGF-1, insulin-like growth factor-1; P, phosphorus; Vit. D, vitamin D.

mainly by circulating glucose [12]. However, insulin is
also directly responsible for growth-related processes
[13]. Thus, it is often used in cell culture media, indicat-
ing its growth-promoting capacities. This is relevant for
leukocytes that, importantly, cannot become insulin-
resistant but upregulate GLUT1, GLUT3, and GLUT4
transporters upon activation [14].

Insulin-like growth factor-1 (IGF-1) is an important
promotor of muscle growth [15]. Since important gluco-
genic amino acids like alanine, glutamine, glutamic acid,
aspartic acid, and asparagine are deposited in muscular
proteins, muscles are important stores of energy-rich
fuels that can serve gluconeogenesis [16]. IGF-1 also
stimulates growth of adipose tissue and bone [17,18].
Thus, IGF-1 is an important storage hormone for energy-
rich fuels and for factors auxiliary to the immune system
such as calcium and phosphorus.

Androgens

Early after the discovery of androgens in the 1930s,
the growth-promoting effect of androgens had already
been recognized and their anabolic effects on muscle,
bone, and hair had been described [19,20]. During
World War II, androgens were given to victims of
starvation to help restore a positive nitrogen balance
typical for anabolic substances. In the 1950 and 1960s,
androgens started to be used as doping because of its
anabolic effects. The loss of androgens during aging
was linked to muscle and bone loss [21]. In addition,
testosterone increases insulin sensitivity, and androgen
deficiency is linked to the development of type 2
diabetes mellitus [22]. This short summary clearly
identifies androgens as anabolic hormones leading
to storage of energy-rich substrates and calcium and
phosphorus.
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Estrogens

Similar to androgens, estrogens were described to pro-
mote bone growth [23], and part of the androgen effect
on bone is mediated by aromatization of androgens to
estrogens [24]. Thus, estrogens are important in storing
calcium and phosphorus in bone. Estrogens influence
body fat patterning by inducing the gynoid subcutaneous
fat accumulation and by inhibiting the android visceral
fat accumulation [25]. However, it seems that estrogens
at physiological concentrations inhibit lipogenesis and
adiposity as indicated by post-menopausal increase of vis-
ceral adipose tissue mass [26]. Estrogens induce insulin
sensitivity in the physiological range but can lead to insulin
resistance at low (post-menopausal) and high (pregnancy)
concentrations [26]. Estrogens also stimulate synthesis and
release of pancreatic insulin [26]. The support of insulin is
directed mainly toward the muscular compartment be-
cause estrogens increase insulin-mediated muscle glucose
uptake [26].

In conclusion, the role of estrogens is bi-modal in
that both storage and release of energy-rich fuels have
been described. This may depend on the balance of
estrogen receptor (ER)-type alpha versus ERB with op-
posite functions [26]. It can also depend on local estro-
gen levels and intracellular conversion from androgen
precursors, mechanisms described to be relevant in
inflammation [27].

Vitamin D: the D hormone

Since the 1930s, it has been known that vitamin D acti-
vates calcium import from the intestinal lumen into circu-
lation, thereby increasing calcium serum levels [28,29].
The second major function of vitamin D is renal re-
absorption of calcium and phosphorus [29]. These two
functions of vitamin D increase calcium and phosphorus
in the circulation. For a long time, the presence of high
calcium and phosphorus in circulation was thought to
be solely responsible for increased bone mineralization.
Today, we know that bone remodeling is also a direct
function of vitamin D [29]. Thus, vitamin D is a major
hormone for storage of calcium and phosphorus in bone.
In addition, vitamin D increases muscle contractile pro-
teins such as actin and troponin C [30]. Polymorphisms in
the vitamin D receptor were linked to changes in muscle
mass and strength, and vitamin D treatment improves
myopathy [30]. This indicates a positive effect on storage
of energy-rich fuels in muscles. In summary, vitamin D is
responsible for storage of calcium/phosphorus in bone
and amino acids in muscle.

Osteocalcin

Osteocalcin is an osteoblast hormone that can bind cal-
cium ions, regulates bone mineralization and bone turn-
over, and is used as a biomarker for bone formation [31].
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Thus, it is an important hormone for storage of calcium
and phosphorus in bone.

In the last decade, different approaches demonstrated
osteocalcin as a link between the bone and adipose tissue
[31]. Mice lacking osteocalcin displayed decreased pancre-
atic beta-cell proliferation, glucose intolerance, and insulin
resistance [32]. Osteocalcin stimulates insulin expression
in pancreatic beta-cells in vitro and glucose tolerance
in vivo [32].

Serum levels of the uncarboxylated form of osteocalcin
are associated with improved glucose tolerance and en-
hanced pancreatic beta-cell function in middle-aged
men [33]. Serum osteocalcin was negatively correlated
with fasting insulin and ‘homeostasis model assessment
of insulin resistance’ [34]. Several other reports link high
osteocalcin levels to insulin sensitivity [31], but studies
in humans have not yet shown direct causal effects [35].
Nevertheless, these studies indicate that osteocalcin sup-
ports insulin function and thus storage of energy-rich
fuels in adipose tissue and muscle.

Mouse models with loss- or gain-of-function muta-
tions in the osteocalcin gene (BGLAP) suggested that
osteocalcin is responsible for the regulation of fertility in
males only [36]. Leydig cells treated with uncarboxylated
osteocalcin showed increased testosterone synthesis [36].
This might demonstrate positive cross-talk of two stor-
age hormones in the energy storage network (Figure 2).

Finally, one of the major hormones to release energy-
rich fuels from storage sites, namely glucocorticoid, re-
duces osteocalcin levels in that it inhibits osteoblast
function [37]. This is another indication of the storage
function of this hormone that can be switched off by a
hormone of the energy expenditure network.

Vagus nerve

In the fasting situation, vagal afferents are important in
transferring hepatoportal information on low blood glu-
cose and low levels of other nutrients to the dorsal vagal
complex, leading to hunger signals, inhibition of sympa-
thetic activation, inhibition of efferent vagal activation,
hypometabolism, and hypothermia [38-40]. In acute sys-
temic infection without food intake, this behavior protects
energy stores.

In the feeding situation, vagal afferents together with
gastrointestinal hormones such as cholecystokinin trans-
mit signals to the dorsal vagal complex, leading to satiety
signals, activation of the sympathetic nervous system
(SNS) (short-lived post-prandial thermogenesis and hy-
permetabolism), activation of efferent vagal nerve fibers
(propulsive motility and secretion of exocrine and endo-
crine pancreatic and gastrointestinal factors), hyperinsu-
linemia, and thus storage of energy-rich fuels [38-41].
Although the SNS post-prandially induces short-lived
hypermetabolism, the net effect of the vagus nerve leads
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to energy-storage largely because of hyperinsulinemia.
This is supported by an important experiment in the
early 1990s. Lesioning of the SNS headquarters in the
hypothalamus, the ventromedial hypothalamic nucleus,
leads to hypoactivity of the SNS and hyperactivity of the
efferent vagus nerve with hyperinsulinemia and obesity
[42]. Thus, in the fasting and in the feeding situation,
the vagus nerve is responsible for energy storage.

Energy expenditure hormones

Energy expenditure hormones are typically released upon
stressful events such as hypoglycemia or other forms of
stress such as acute inflammation or trauma. This can
happen in acute inflammatory situations such as systemic
infectious diseases, which induce an energy re-allocation
program with three major pathways: (i) release of energy-
rich fuels from storage sites into circulation (liver glu-
cose, muscle amino acids, glycerol, and free fatty acids
from fat tissue), (ii) inhibition of uptake of energy-rich
fuels into liver, muscle, and fat tissue by intentionally in-
duced insulin resistance, and (iii) inhibition of growth-
related and reproductive functions [4]. Similar programs
are used in CIDs.

Cortisol

Cortisol was demonstrated to be a muscle-catabolic factor
inducing rapid release of amino acids from muscle [43].
Glucocorticoids stimulate overall lipolysis at the whole-
body level [44], but glucocorticoids may specifically inhibit
abdominal lipolysis because chronic hypercortisolemia
secondary to Cushing’s syndrome is characterized by
distinct abdominal obesity. Recent data point toward
cortisol-induced increase of visceral fat on the basis of
visceral 11B-hydroxysteroid dehydrogenase type 1 avail-
ability [45]. Thus, cortisol would support lipolysis and
re-allocation of lipids to visceral stores and elsewhere.

Cortisol is an important stimulator of glycogenolysis
and gluconeogenesis in the liver [46]. Cortisol inhibits
bone formation by blocking osteoblasts, decreasing
osteocalcin levels, and interfering with several other
pathways [37]. Cortisol supports insulin resistance so
that energy-rich substrates cannot be taken up into
muscle, liver, and fat tissue [47].

In conclusion, cortisol via many independent pathways
belongs to the network of energy-expenditure hormones,
an increase of which leads to rapid allocation of energy-
rich fuels to the immune system. However, a program
with long-term elevation of cortisol is not positively
selected, because of the danger of immunosuppression
and sepsis.

Noradrenaline/adrenaline-sympathetic nervous system
The SNS innervates the liver and supports hepatic glyco-
genolysis and gluconeogenesis, leading to release of
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glucose [48]. With respect to another important energy-
rich fuel, namely free fatty acids, the SNS induces lipoly-
sis in brown and white adipose tissue [49]. The SNS is
also responsible for release of the third group of energy-
rich fuels, namely amino acids. Neurotransmitters of
the SNS can induce muscle breakdown which is p-
adrenoceptor-mediated [50]. It was suggested that the
SNS is a regulator of muscle catabolism [51]. The SNS
inhibits insulin secretion leading to little glucose provision
to muscles, liver, and fat tissue [52]. Furthermore, the SNS
drives insulin resistance in target organs such as muscle,
liver, and fat tissue so that uptake of energy-rich fuels is
inhibited [53]. The SNS activates glucagon secretion from
the pancreas [54], thereby helping to provide glucose to
the activated immune system. In addition, the SNS is a
key element of bone turnover leading to net bone loss
[32]. All these functions of the SNS are related to alloca-
tion of energy-rich fuels and calcium and phosphate to an
activated immune system.

Since cortisol and noradrenaline are often cooperative in
their individual functions by increasing the respective sig-
naling pathway of the B-adrenoceptor and glucocorticoid
receptor type a (for example, [55,56]), these two hormones
support each other in release of energy-rich fuels or cal-
cium/phosphorus from stores. Furthermore, the SNS is the
important stimulator of the renin-angiotensin-aldosterone
system (RAAS) leading to water and sodium retention
(see below).

Growth hormone

In adults, the growth-promoting effects of growth hor-
mone are mediated mainly via IGF-1 [57]. Growth
hormone via IGF-1 increases net whole-body protein
synthesis and, thus, growth hormone has some ana-
bolic effects [57], which might change during inflam-
matory illness because of growth hormone receptor
resistance and loss of pulsatile growth hormone secre-
tion [58-61].

Concerning effects of IGF-1 and growth hormone on
metabolism, IGF-1 often demonstrates opposite effects to
growth hormone [57]. IGF-1 increases insulin sensitivity,
decreases hepatic glucose production, and stimulates
muscle glucose uptake, whereas growth hormone increases
insulin resistance, increases hepatic glucose production,
and reduces muscular and fat tissue glucose uptake [57].
Consequently, growth hormone increases blood glucose
and, thus, this hormone is one of the major counter-
regulatory hormones to insulin.

While IGF-1 has no influence on lipolysis in adipose
tissue, growth hormone induces lipolysis and reduces
lipogenesis [57]. Thus, growth hormone in contrast to
IGF-1 has many catabolic effects leading to provision of
energy-rich substrates to an activated immune system in
inflammation. In addition, growth hormone has anti-
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natriuretic effects, thereby adding to water and sodium
retention [62].

Thyroid gland hormones

Thyroid hormone levels in the normal range are in-
versely correlated with body weight in women and men,
indicating catabolic effects [63]. Thyroid hormones ac-
celerate metabolism, increase lipolysis, stimulate hepatic
gluconeogenesis, induce thermogenesis, increase the
Cori cycle (the cycle of glucose-lactate-glucose between
liver and glucose-demanding tissue), decrease glycogen
stores, accelerate insulin degradation, and increase
GLUT4 glucose transporters in the skeletal muscle and
monocytes [64-66].

Various functions of thyroid hormones on metabol-
ism depend on concomitant signaling of thyroid hor-
mones and catecholamines [67]. Cooperativity of the
two hormone pathways depends on signaling through
cyclic AMP response elements and thyroid hormone
response elements on the promoter of many genes (for
example, phosphoenolpyruvate carboxykinase, the key
enzyme of gluconeogenesis) [67]. Catecholamines in-
crease the set point for feedback inhibition of the
hypothalamic-pituitary-thyroid axis by the biologically
active tri-iodothyronine (T3), leading to increased
thermogenesis [65]. Thus, thyroid hormones are major
energy expenditure hormones.

A euthyroid status is important for normal bone devel-
opment during growth and for maintenance of bone in
adulthood [68]. Population studies indicate that hor-
mone deficiency and hormone excess are associated with
increased bone loss and fracture risk [68]. Elevated T3
induces catabolic effects on bone as substantiated in
hyperthyroidism [68]. Thus, T3 at higher levels leads to
provision of calcium and phosphorus.

While thyroid hormones stimulate the RAAS and so-
dium retention, they also directly increase heart rate,
cardiac output, blood pressure, water intake, and various
ion channels and transporters, leading to increased
glomerular filtration [69]. Patients with hyperthyroidism
often show polyuria but this is probably related to in-
creased water intake [69]. However, if one studies glom-
erular filtration rate in relation to kidney weight (thyroid
hormones increase kidney weight), then thyroid hor-
mones decrease glomerular filtration and increase water
and sodium retention [70].

The renin-angiotensin-aldosterone system

Apart from its major function of sodium and water re-
tention, the RAAS was found to induce insulin resist-
ance on local and systemic levels, which explains why
therapies that interfere with the RAAS reduce the inci-
dence of type 2 diabetes mellitus [71-73]. Angiotensin II
stimulates glycogenolysis and gluconeogenesis [74]. It
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seems that hormones of the RAAS exert these effects via
intracellular induction of reactive oxygen species [71,72].
Angiotensin II via the angiotensin receptor type 1 was
directly involved in insulin receptor inhibition [73].

In addition, angiotensin II stimulates osteoclasts in vitro
and in vivo [75,76], and treatment of hypertensive patients
with angiotensin-converting enzyme (ACE) inhibitors was
related to a lower risk of bone fractures and a higher bone
mineral density [77,78]. It is highly interesting that vitamin
D, which is often low in CIDs, is a negative regulator of
the RAAS, so that low levels of vitamin D would support
insulin resistance together with bone loss [79].

Angiotensin II stimulates noradrenalin release from
sympathetic nerve terminals, which explains why some
effects of the RAAS on systemic energy regulation and
bone metabolism are similar to effects of the SNS [73].
Thus, similar to the SNS with its major neurotrans-
mitters noradrenaline/adrenaline, angiotensin II, a major
hormone of the RAAS, supports re-allocation of energy-
rich fuels and calcium/phosphorus to an activated im-
mune system.

Summary 1

Table 1 summarizes the effects of different types of hor-
mones on energy storage and energy expenditure. It turns
out that there are two major networks, one that stores
energy-rich fuels and one that releases energy-rich fuels
upon stressful life events such as acute inflammation
(systemic infectious disease or injury), psychological stress,
trauma/hemorrhage, pain, and mental illness. The con-
dition of chronic smoldering inflammation during aging
or in obesity most probably influences the two networks
in a similar but more protracted way over decades. The
chronic misuse of the energy expenditure system leads to
the known systemic disease sequelae in chronic inflamma-
tory diseases (see below).

Hormone effects on inflammation and observed
changes in chronic inflammation: consequences
for energy and volume regulation

Insulin and insulin-like growth factor-1

In earlier years, the direct effect of insulin on immune
cells was demonstrated to be pro-inflammatory, mainly
by supporting proliferation of immune and other cells
[80]. In recent years, insulin was categorized as an anti-
inflammatory hormone because it is able to remove
energy-rich fuels such as glucose and free fatty acids
from circulation that would nourish the immune system
[81,82]. Although this latter concept seems reasonable
with intact insulin signaling, it will not work under insu-
lin resistance of liver, muscle, and fat tissue. Thus, the
balance between systemic anti-inflammatory insulin ef-
fects and local pro-inflammatory insulin effects will in-
fluence the role of this hormone in a given situation. It
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Table 1 Summary of energy storage and energy expenditure hormones

Fat tissue Muscle Liver Bone Kidneys
Energy storage hormones
Insulin Uptake® Uptake® Uptake®
Insulin-like growth factor-1° Growth Growth Uptake® Growth
Androgens® Growth Growth
Estrogens® Gynoid fat Glucose Growth
distribution uptake®
Vitamin D Growth Growth Calcium/phosphorus
retention

Osteocalcin®® Glucose Glucose Growth

uptake® uptake®
Vagus nerve Uptake® Uptake®
Energy expenditure hormones
Cortisol® Release® Release® Release® Release® Water/sodium retention
Sympathetic nervous system (noradrenaline/ Release® Release® Release® Release® Water/sodium retention
adrenaline)?
Growth hormone® Release® Release? Release® Growth via Water/sodium retention

IGF-1

Thyroid hormones (T3) Release® Release® Release® Release® Water/sodium retention
RAAS® Release® Release® Water/sodium retention

@Uptake/release of energy-rich fuels into/from respective tissue; Pincrease of insulin sensitivity; “support of androgens; 9ddecrease of insulin sensitivity (induction of
insulin resistance). IGF-1, insulin-like growth factor-1; RAAS, renin-angiotensin-aldosterone system; T3, tri-iodothyronine.

is proposed that insulin resistance is the critical deter-
minant of the pro- or anti-inflammatory effect of insulin,
because only liver, muscle, and fat tissue, but not leuko-
cytes, become insulin-resistant [14].

IGF-1 was demonstrated to have mainly pro-inflammatory
effects [83,84]. The aspects of IGF-1 are stimulation of
hematopoiesis, T and B lymphopoiesis, increase of natural
killer cell activity, priming of macrophages and neutro-
phils for radical production, increase of TNF production
from macrophages, sensitization for mitogen stimulation,
and enhanced primary antibody responses in vivo [83].

In CIDs such as rheumatoid arthritis (RA) and sys-
temic lupus erythematosus (SLE), hyperinsulinemia and
insulin resistance were described [85-87]. In addition,
IGF-1 resistance was described in patients with RA
[60], and IGF-1 levels are typically decreased in chronic
inflammation [88-90]. Thus, both pathways through in-
sulin and IGF-1 receptors are not intact in CIDs. For
insulin, uptake of energy-rich fuels into liver, muscle,
and fat will be diminished, but direct activation of local
immune cells will still be possible (Figure 3). Loss of
IGF-1 will be associated with a cachectic situation due
to the growth-promoting activity of this hormone in
muscle. Thus, loss of IGF-1 and IGF-1 resistance will
diminish the stores for energy-rich fuels and auxiliary
factors in muscles, fat tissue, and bone, thereby serving
the activated immune system (Figure 3).

Androgens and estrogens

Whereas androgens are mainly anti-inflammatory [92,93],
estrogens have a bi-modal pro- and anti-inflammatory
role. Estrogen effects depend on several recently summa-
rized criteria [27]: (a) the immune stimulus (foreign anti-
gens or autoantigens) and subsequent antigen-specific
immune responses (for example, T cell inhibited by estro-
gens versus B cell activated by estrogens), (b) the cell types
involved during different phases of the disease, (c) the tar-
get organ with its specific microenvironment, (d) timing
of 17pB-estradiol administration in relation to the disease
course (and the reproductive status of a woman), (e) the
concentration of estrogens, (f) the variability in expression
of ERa and ERP depending on the microenvironment and
the cell type, and (g) intracellular metabolism of estrogens
leading to important biologically active metabolites
with quite different anti- and pro-inflammatory func-
tion. Thus, B cell-dominated immune reactions that are
supported by T helper type 2 immune responses are
stimulated, whereas T helper type 1 and macrophage-
dominated immune responses are inhibited.

In CIDs of different etiology, serum androgens are
very low [94-96], but estrogen levels remain relatively
normal as a consequence of increased conversion of an-
drogens into estrogens in inflamed tissue [97]. Androgen
loss is particularly evident for the adrenal androgen de-
hydroepiandrosterone sulfate, the major precursor of
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Figure 3 Schematic representation of the consequences of insulin and insulin-like growth factor-1 (IGF-1) signaling alterations.
Pro-inflammatory factors such as tumor necrosis factor (TNF) reduce signaling of insulin and IGF-1 and production of IGF-1 from liver (for
example, [91]). This program affects liver, adipose tissue, and muscle, but not immune cells, because they cannot become insulin-resistant.
The consequence is a deviation of energy-rich fuels from storage sites (liver, adipose tissue, and muscle) to the activated immune system

and inflammatory tissue.

androgens in post-menopausal women and older men.
Loss of androgens together with a loss of and resistance
to IGF-1 is a very critical factor for cachexia and bone
loss, leading to a loss of energy storage sites in skeletal
muscle and bone.

Since estrogens can be produced locally [97] and since
estrogens support pre-adipocyte proliferation and local
fat tissue growth [25,98] as well as lipoprotein lipase
necessary to store lipids at low estrogen concentra-
tions [99], local estrogen levels might determine re-
gional accumulation of fat tissue such as in synovial
fat tissue of patients with RA or juxtaintestinal fat tis-
sue in patients with Crohn disease (called creeping
fat). Such a local accumulation would serve regional
storage of energy-rich fuels.

Vitamin D and osteocalcin
Vitamin D was described to foster many aspects of innate
immunity but inhibits adaptive immunity toward a T helper
type 1 and T helper type 17 direction [100]. Vitamin D is
an important factor in the development of tolerogenic den-
dritic cells and T regulatory lymphocytes [101].
Hypovitaminosis D is a general phenomenon in many
CIDs [100]. This might be due to little exposure to sun-
shine, decreased conversion of endogenous vitamin D pre-
cursors, disturbed resorption of vitamin D precursors in
the gut, and/or sickness behavior-dependent malnutrition.
Thus, loss of vitamin D may support the inflammatory
process but also general osteoporosis, which would serve
the immune system by providing calcium and phosphorus.

For osteocalcin, no effects on immune responses and
inflammatory cells have been described in the literature.
In regard to serum levels of osteocalcin, decreased, in-
creased, or normal levels have been described in patients
with CIDs [102-106]. Thus, with respect to osteocalcin,
no clear picture emerges as to the help of this hormone
in the energy regulation of CIDs.

Vagus nerve

The vagus nerve was reported to have important anti-
inflammatory activities in acute inflammation due to in-
hibition of TNF [107]. This can be a favorable ‘cholinergic
reflex’ that might inhibit inflammation in CIDs as recently
noticed [107]. However, chronic inflammation such as in
RA is accompanied by vagal hypoactivity and sympathetic
hyperactivity [108-110]. Thus, an anti-inflammatory and
energy-storing function of the vagus nerve is probably not
available. Both aspects would support ongoing inflamma-
tion in CIDs.

Cortisol and the sympathetic nervous system

Cortisol is an anti-inflammatory hormone on most occa-
sions [111]. Thus, a long-standing increase of serum corti-
sol levels after acute stressful events such as infectious
disease would be unfavorable because of the danger of sep-
sis. However, after acute activation of the hypothalamic-
pituitary-adrenal (HPA) axis with short-term increase of
serum cortisol, there is a rapid reduction of this major
anti-inflammatory hormone, best recognized after repeated
injections of cytokines [112]. Similarly, in untreated CIDs,
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serum levels of cortisol are usually normal or somewhat
higher [113], but they are inadequately low to suppress the
ongoing inflammatory process. Somewhat elevated cortisol
levels would serve insulin resistance and glucose/free fatty
acid provision to the activated immune system, but at these
levels one does not expect many anti-inflammatory effects
(inadequate levels in relation to inflammation). Slightly ele-
vated cortisol might also support bone breakdown in order
to deliver auxiliary factors such as calcium and phosphorus
to activated immune cells.

In contrast to transient cortisol increase, there exists a
long-standing activation of the SNS in CIDs [110]. There
seems to be a dissociation between high activity of the
SNS and relatively normal activity of the HPA axis in CIDs
[114,115]. Since sympathetic neurotransmitters can have
anti-inflammatory effects on monocytes, macrophages,
natural killer cells, neutrophils, and T helper type 1 lym-
phocytes via p2-adrenergic receptors, increased activity of
the SNS might be favorable in local inflammation [116].
However, it was observed that local density of sympathetic
nerve fibers is markedly reduced in inflamed tissue of dif-
ferent CIDs and in secondary lymphoid organs of animals
with CIDs, which is a pro-inflammatory signal recently
summarized [116].

Thus, a higher activity of the SNS supports provision
of energy-rich fuels on a systemic level but probably has
no favorable anti-inflammatory effects in inflamed tissue.
This can also be the reason for a disease-propagating
role of the SNS in animal models of arthritis (summa-
rized in [116]). In addition, an elevated sympathetic ner-
vous tone stimulates sodium and water retention and
bone loss, which support the activated immune system.

Growth hormone

Growth hormone accelerates recovery of the immune
system following transplantation of various cell types,
and it replenished the severely affected T-cell compart-
ment in patients with HIV [117]. Treatment with drugs
that stimulate growth hormone secretion or treatment
with growth hormone can have positive effects in restor-
ing aspects of the aged immune system [117]. Immune
cells carry the growth hormone receptor, and growth
hormone signaling involves JAK2-STAT-Ras-MAPK
pathways that are shared by cytokine signaling pathways
(summarized in [117]).

Growth hormone given to healthy volunteers slightly
but significantly increased serum TNF and serum IL-6
[118]. Growth hormone was made responsible for the
chronic smoldering inflammation during aging, which
can be studied in growth hormone pathway-deficient
mice that demonstrate less inflammation and increased
longevity [119]. Furthermore, growth hormone primes
neutrophils for production of lysosomal enzymes and
superoxide anions, supports survival of memory T cells,
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increases immunoglobulin secretion of B cells, and stim-
ulates thymulin secretion by thymic epithelial cells, nat-
ural killer cell activity, phagocytosis, oxidative burst, and
killing capacity of neutrophils or macrophages [120].
Transgenic mice overexpressing growth hormone or its
receptor exhibit overgrowth of the thymus and spleen
and display increases in mitogenic responses to Conca-
navalin A [120].

Growth hormone serum levels were lower, normal, or
slightly elevated in patients with RA and SLE (summarized
in [121]). Thus, in patients with CIDs, growth hormone
serum levels behave similarly to cortisol serum levels. In
other words, there is no clear increase or decrease of hor-
mone levels in serum. One might argue that, because of
unchanged serum levels, these hormones are not much in-
volved. However, the anti-inflammatory role of endogenous
cortisol was visualized in CIDs by blocking endogenous
cortisol production with metyrapone [122]. We learned
that growth hormone has important immunostimulating
effects, and the question appears whether inhibition of
growth hormone release by somatostatin also demon-
strates effects of the endogenous hormone in CIDs, similar
to endogenous cortisol when blocked with metyrapone.

Open therapies with the growth hormone inhibitor som-
atostatin in small studies demonstrated anti-inflammatory
effects such as reduction of synovial membrane thickness
[123] and improved clinical symptoms such as morning
stiffness and other American College of Rheumatology cri-
teria in RA [124,125]. Although somatostatin has direct
suppressive effects on immune cells and nociceptive nerve
fibers [126], somatostatin might also block growth hor-
mone release on a systemic level in the pituitary gland.
Thus, one can hypothesize that anti-inflammatory effects
of somatostatin or other growth hormone blockers are ex-
pected on the basis of inhibition of energy expenditure
and inhibition of immunostimulation, two functions of
growth hormone. This sounds pretty reasonable, but ex-
perimental proof in this complex growth hormone-IGF-1
system is necessary.

During growth in children and adolescents, the situation
might be quite different because energy-rich fuels like glu-
cose and amino acids and calcium/phosphorus are stored
in muscle and bone (they are not provided to the active
immune system). Growth hormone might be judged in a
different way in juvenile forms of CIDs because of ana-
bolic effects on muscle and bone growth [127]. Indeed, in
juvenile forms of CIDs, growth hormone can have favor-
able growth-promoting but not anti-inflammatory effects
(summarized in [127]). From this point of view, one can
hypothesize that growth hormone effects depend on a bal-
ance between storage versus expenditure of energy-rich
fuels and calcium/phosphorus. Growth hormone might
shift this balance toward energy storage in children and
energy expenditure in adults.
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Thyroid hormones

Thyroid hormones induce oxygen radical production in
neutrophils [128], I[FN-y-stimulated major histocompati-
bility complex class II expression [128], IL-6, IL-8, and
IL-12 secretion from different cell types [128], lympho-
cyte proliferation [128], IFN-y-stimulated natural killer
cell activity [128], and superoxide anion production in
human alveolar neutrophils and macrophages [129].
Thyroid hormones are required for normal B-cell pro-
duction in the bone marrow [130]. These genomic ef-
fects are complemented by non-genomic effects of
thyroid hormones [128]. Thyroid hormones can bind to
the integrin avP3 to switch on a cascade of signaling
events through MAPK, phospholipase C, proteinkinase
Ca, ERK1/2, and/or hypoxia-inducible factor-1, leading
to enhanced cytokine and growth factor action and
angiogenesis [128]. Apart from classic actions of thyrox-
ine (T4) and T3, the thyroid gland-stimulating hormone
(TSH) has many supportive effects on the immune sys-
tem [120]. Although thyroid hormones have also some
anti-inflammatory actions, usual concentrations of hor-
mones of the hypothalamic-pituitary-thyroid gland axis
exert many stimulatory effects on the immune system
and inflammation. The question remains whether thy-
roid hormones like the biologically active T3 are really
elevated during acute and chronic inflammation.

Elevation of systemic inflammation such as during injury,
inflammation, or starvation leads to the non-thyroidal ill-
ness syndrome, which has the following features [131]: (a)
downregulation of hypothalamic thyrotropin-releasing hor-
mone; (b) lowered secretion of TSH, free T4, and free T3;
(c) decreased levels of circulating free T3 due to decreased
peripheral T4—T3 conversion; and (d) increased metabol-
ism of biologically active T3 to inactive reverse T3. All
mechanisms lead to inhibition of the hypothalamic-
pituitary-thyroid gland axis.

Cytokines play an important role in this sequence as
demonstrated for IL-6. After injection of IL-6 into
healthy volunteers, T4 and free T4 increased after
4 hours but T3 levels were reduced 24 hours later, which
indicates a rapid downregulation of this biologically ac-
tive hormone by IL-6 [132].

Although not many studies in chronic rheumatic dis-
eases exist, it seems likely that levels of thyroid hormones
are low as demonstrated in SLE and Kawasaki disease
[133,134]. However, it remains unclear whether this is a
direct effect of increased circulating cytokines (as detected
in non-thyroidal illness syndrome) or secondary anti-
thyroid autoimmunity with functional defects. A recent
investigation in patients with RA found a decrease in TSH
levels during TNF-neutralizing therapy [135]. This might
be interpreted as a consequence of TNF-induced reduc-
tion of peripheral thyroid hormones and, consequently,
upregulation of TSH, but the exact mechanisms remain
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enigmatic. In summary, in chronic and acute inflamma-
tion, there seems to exist a rapid downregulation of the
hypothalamic-pituitary-thyroid gland axis.

Importantly, recent experimental studies have shown
that downregulation of the central part of this axis ob-
served during acute and chronic inflammation does not
necessarily induce decreased thyroid hormone levels in
key metabolic organs such as liver, muscle, and adipose
tissue (summarized in [136]). The differential regulation
of local thyroid hormone availability depends mainly on
expression of activating (D1 or D2) and inactivating
(D3) deiodinases [136].

For example, during acute inflammation, in the
muscle, the hormone-activating deiodinase D2 increases
whereas the hormone-inactivating D3 decreases, which
would lead to higher muscular T3 levels, resulting in in-
creased breakdown of energy-rich substrates in the
muscle only [136]. This is different in chronic inflamma-
tion, where D2 and D3 are elevated and, as was de-
scribed, the net effect on T3 is a reduction in active T3
[136]. A similar concept exists in the liver, but the exact
pathways are far from clear [136]. Local deiodinase
expression has not been tested in adipose tissue during
inflammation, so thyroid hormone availability is not
known in this compartment.

In granulocytes, the inactivating D3 is highly expressed
[136]. In these cells, the release of inorganic iodide was
related to improved killing of bacteria [136]. This is a
very attractive concept because it might well explain the
stimulating effects of thyroid hormones on phagocytosis
and killing independent of genomic effects via thyroid
hormone receptors.

In conclusion, the hypothetical sequence of events
during inflammation might be as follows: (a) there is a
rapid increase of thyroid hormones for the first 4 hours;
(b) then, a rapid downregulation of the hypothalamic-
pituitary-thyroid gland axis is established (as observed as
low T3 non-thyroidal illness syndrome); (c) this is ac-
companied by differential expression of deiodinases with
relatively normal local T3 in metabolic organs, which
might serve the activated immune system by breakdown
of energy-rich substrates (known for muscle); and (d) ac-
tivated granulocytes would be nourished by these circu-
lating substrates and, in parallel, increase D3 expression
to provide inorganic iodide necessary to kill bacteria.

Angiotensin Il

While systemic effects of angiotensin II are related to
hemodynamic and metabolic functions (see above), local
RAAS pathways support pro-inflammatory, proliferative,
and profibrotic activities via angiotensin type (AT)1 re-
ceptors that couple to G proteins of the type Gq and
Gai (recently summarized in [137]). AT2 receptors also
couple to Gai proteins, a G protein that supports pro-
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Table 2 Changes of the hormonal systems in chronic inflammatory rheumatic diseases
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Effect on immune
system/inflammation

Observed changes in chronic
inflammatory rheumatic diseases

Long-term
consequences

Energy storage hormones

Insulin Direct support of immune cells

Pro-inflammatory in a state of systemic
insulin resistance

Leukocytes do not become insulin-resistant

Insulin-like growth factor-1 Support of innate and adaptive

immunity [83,84]

Androgens Inhibition of immune system and
inflammation [148]

Estrogens Bi-modal role: support of B lymphocytes and T Normal peripheral and high local estrogen
levels, high 16a-hydroxylated estrogens®

helper type 2; inhibition of macrophages, natural
killer cells, and T helper type 1 (see [27])

Vitamin D Bi-modal role: support of innate immunity
and inhibition of adaptive immunity [149]

Osteocalcin Not known

Vagus nerve Immunosuppressive in acute

inflammation (TNF)

Energy expenditure
hormones

Cortisol Immunosuppressive

Sympathetic nervous system  (-Adrenergic: suppressive for innate immunity
(noradrenaline/adrenaline) and T helper type 1 lymphocytes, support of
B lymphocytes

a-Adrenergic: support of inflammation

Growth hormone

Thyroid hormones (T3)

Immunostimulatory
Directly immunostimulatory

Indirectly via provision of inorganic iodide

RAAS (angiotensin Il) Directly immunostimulatory

Hyperinsulinemia, insulin resistance

Low IGF-1, IGF-1 resistance

Hypoandrogenemia

Low 2-hydroxylated estrogens®

Hypovitaminosis D is common

Little and ambiguous results

Low activity

Normal to slightly increased in GC-free pa-
tients, low levels in GC-pretreated patients

High activity

Little and ambiguous results

Low T3 levels, diminished activity of the
hypothalamic-pituitary-thyroid gland axis
but possibly normal T3 levels in muscle

Elevated activity

Insulin resistance,
cachexia,

Stimulation of
sympathetic
nervous system?

Immune activation

Cachexia, osteoporosis,
immune activation

Cachexia, loss of
fertility, osteoporosis

Insulin resistance,
immune activation

Local
juxtainflammatory
fat deposition

Immune activation

(16a-hydroxylated forms)

Osteoporosis, cachexia

Immune activation
toward Th1 and Th17

Unclear

Loss of appetite,
gastrointestinal
disturbances, immune
activation

Cachexia, osteoporosis
Volume overload

Not much influence on
immune system

Cachexia, osteoporosis

Hypertension, volume
overload

Immune activation due
to nerve fiber loss®

Cachexia, osteoporosis
Cachexia

Immune activation in
granulocytes

Volume overload,
hypertension

Cachexia, insulin
resistance, osteoporosis

Immune activation

“This will not lead to immunosuppression due to loss of sympathetic nerve fibers in inflamed tissue and secondary lymphoid organs. PThese are proproliferative
mitogenic estrogens. These are anti-mitogenic estrogens. “Sympathetic nerve fiber loss was described locally in inflamed tissue and in secondary lymphoid
organs. GC, glucocorticoid; IGF-1, insulin-like growth factor-1; RAAS, renin-angiotensin-aldosterone system; T3, tri-iodothyronine; Th, T helper lymphocyte; TNF,

tumor necrosis factor.
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inflammatory pathways. In different organs such as kid-
ney, heart, and vasculature, angiotensin II induces an
inflammatory response by fostering the expression of
pro-inflammatory chemokines, responsible for tissue accu-
mulation of immunocompetent cells [137]. Angiotensin II
via AT1 receptors is also a pro-inflammatory factor in a
lupus mouse model [138]. ACE inhibitors of different
types reduce severity of collagen type II-induced
arthritis [139,140].

Acute infectious disease leads to upregulation of the
RAAS system in a mouse model of cytomegalovirus infec-
tion [141]. Injection of lipopolysaccharide into rats in-
creased activity of the RAAS system [142]. Patients with
sepsis demonstrate increased activity of the RAAS [143].
ACE is upregulated in synovial tissue of patients with RA,
leading to higher availability of angiotensin II in inflamed
joints [144]. Although the pro-inflammatory role of an-
giotensin II is well established, very few studies have
addressed serum levels of hormones of the RAAS in
humans. Two Russian studies identified increased levels of
angiotensin II and aldosterone in patients with RA and
SLE, but this awaits further confirmation [145,146].

In conclusion, all of these findings indicate that the RAAS
is activated in acute and chronic inflammation. Since the
RAAS exerts pro-inflammatory effects in addition to its
function as an energy expenditure hormonal system, it is
perfectly able to support the re-allocation of energy-rich
fuels to the activated immune system. In addition, water re-
tention with these hormones will be of outstanding import-
ance, possibly leading to volume overload.

Conclusions

For some time, the role of energy expenditure hormones
and energy storage hormones has been known in critically
ill patients with acute inflammation [147]. Transfer of
knowledge from acute inflammation to CIDs was blocked
by the understanding that quite different pathways might
be activated. In addition, most CID researchers worked in
the field of aberrant immune activation or autoimmunity,
but not many people devoted time to the research field of
neuroendocrine immune mechanisms in CIDs. Consider-
ations of evolutionary medicine paved the way to under-
stand that many neuroendocrine pathways used in acute
inflammatory illness are similarly used in CIDs [6]. How-
ever, the long-term use of these pathways is harmful.

Table 2 identifies effects of individual energy storage and
energy expenditure hormones on the immune system and
inflammation. This table also summarizes observed changes
in CIDs and consequences of long-term application of these
adaptive programs, positively selected for short-lived in-
flammation. It turns out that many neuroendocrine path-
ways support immune activation (third column in Table 2),
which in light of autoimmunity or immunity toward harm-
less microbes in the gut/skin/respiratory tract is a misused
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program. In addition to inducing immune activation,
many reported neuroendocrine mechanisms induce
insulin resistance, cachexia, osteoporosis, and volume
overload/hypertension (water retention). In epidemio-
logical studies, these elements were related to higher
mortality and morbidity in CIDs. Thus, long-standing
use of neuroendocrine pathways is in itself a disease-
aggravating etiologic factor.

Although this theory can explain many complications
in CIDs, no treatment schemes exist to treat these indi-
vidual abnormalities in CIDs. The next decade should
address treatment rules to overcome these complications
because they determine advanced mortality in our pa-
tients with CIDs.
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