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Abstract

Introduction: Rheumatoid arthritis (RA) is a complex and clinically heterogeneous autoimmune disease. Currently,
the relationship between pathogenic molecular drivers of disease in RA and therapeutic response is poorly
understood.

Methods: We analyzed synovial tissue samples from two RA cohorts of 49 and 20 patients using a combination of
global gene expression, histologic and cellular analyses, and analysis of gene expression data from two further
publicly available RA cohorts. To identify candidate serum biomarkers that correspond to differential synovial
biology and clinical response to targeted therapies, we performed pre-treatment biomarker analysis compared with
therapeutic outcome at week 24 in serum samples from 198 patients from the ADACTA (ADalimumab ACTemrA)
phase 4 trial of tocilizumab (anti-IL-6R) monotherapy versus adalimumab (anti-TNFα) monotherapy.

Results: We documented evidence for four major phenotypes of RA synovium – lymphoid, myeloid, low
inflammatory, and fibroid - each with distinct underlying gene expression signatures. We observed that baseline
synovial myeloid, but not lymphoid, gene signature expression was higher in patients with good compared with
poor European league against rheumatism (EULAR) clinical response to anti-TNFα therapy at week 16 (P =0.011).
We observed that high baseline serum soluble intercellular adhesion molecule 1 (sICAM1), associated with the
myeloid phenotype, and high serum C-X-C motif chemokine 13 (CXCL13), associated with the lymphoid phenotype,
had differential relationships with clinical response to anti-TNFα compared with anti-IL6R treatment. sICAM1-high/
CXCL13-low patients showed the highest week 24 American College of Rheumatology (ACR) 50 response rate to
anti-TNFα treatment as compared with sICAM1-low/CXCL13-high patients (42% versus 13%, respectively, P =0.05)
while anti-IL-6R patients showed the opposite relationship with these biomarker subgroups (ACR50 20% versus
69%, P =0.004).

Conclusions: These data demonstrate that underlying molecular and cellular heterogeneity in RA impacts clinical
outcome to therapies targeting different biological pathways, with patients with the myeloid phenotype exhibiting
the most robust response to anti-TNFα. These data suggest a path to identify and validate serum biomarkers that
predict response to targeted therapies in rheumatoid arthritis and possibly other autoimmune diseases.
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Introduction
Rheumatoid arthritis (RA) is an autoimmune disease
characterized by symmetrical joint involvement, inflam-
mation, synovial lining hyperplasia, and formation of in-
vasive granulation tissue or pannus. Progression of RA
pathogenesis is associated with impaired joint function
resulting from immune-mediated destruction of bone
and cartilage [1-3]. Considerable patient-to-patient vari-
ation exists in the number of affected joints, the levels of
autoantibody titers and serum cytokines, and the rate of
joint destruction [4,5]. Disease heterogeneity is further
evident upon histological examination of synovial tissues,
where a spectrum of cellular compositions are found, ran-
ging from diffuse leukocytic infiltration to well-organized,
lymphocyte-containing follicle-like structures [6].
Not surprisingly, RA is also heterogeneous in response

to treatment. Although the development of targeted thera-
peutic strategies blocking TNF α, IL-6 receptor, T-cell co-
stimulation blockade and B-cell depletion have provided
meaningful clinical benefit to patients, a key unmet need
in the management of RA is the prospective identification
of patients who are likely to benefit from specific therap-
ies. We hypothesized that a deeper understanding of the
molecular basis of disease heterogeneity will lead to the
discovery of predictive biomarkers able to identify individ-
ual patients who will benefit from a particular therapeutic
strategy [7].
Insight into pathogenic molecular pathways of RA has

emerged in recent years from genome-wide analysis of syn-
ovial tissue gene expression. Multiple studies have assessed
molecular heterogeneity in RA tissue, but few findings have
been validated with subsequent cohorts. Early studies [8,9]
revealed considerable molecular heterogeneity and pro-
posed RA patient subgroups exhibiting gene expression
patterns consistent with ongoing inflammation and adap-
tive immunity or, alternatively, little immune infiltrate
and instead expressing sets of genes involved in extra-
cellular matrix remodeling [10]. Further, it has been ob-
served that lymphoid follicle-containing synovial samples
have increased expression of sets of genes involved in
Janus kinase (JAK)/signal transducer and activator of tran-
scription (STAT) signaling, and IL-7 signal transduction
[11], suggesting that differences in gene expression pat-
terns reflect differences in relative cellular composition of
the RA joint.
Gene and protein expression studies of synovial tissue

at baseline prior to initiating TNFα blockade have also
generated different hypotheses to account for the differ-
ences between good and poor responders. In two studies,
patients who responded to anti-TNFα treatment had tran-
scription profiles enriched for inflammatory processes and
TNFα protein expression [12,13], whereas another report
concluded that good responders actually had lower in-
flammatory processes and cell-surface markers such as
the IL-7 receptor alpha chain [14]. A large gene expression
study of synovial tissues from 62 patients obtained prior
to initiating anti-TNFα therapy identified very few
transcripts that were different between good and poor
responders [15]. In the current study, we build on these
observations by characterizing different molecular pheno-
types of RA synovium - lymphoid, myeloid and fibroid -
and used these to identify soluble biomarkers that predict
differential treatment effects in RA patients.

Methods
Patients and synovial tissues
Synovial tissues were obtained from RA subjects under-
going arthroplasty and/or synovectomy of affected joints
(University of Michigan, two sequential cohorts, n = 49
and n = 20). Written consent was obtained from patients,
and the University of Michigan Institutional Review Board
approved the study protocol. RA was diagnosed based
upon the 1987 College of Rheumatology (ACR) criteria
[16]. Patients were treated using the standard of care for
RA (non-steroidal anti-inflammatory drugs (NSAIDs) and
disease-modifying anti-rheumatic drugs (DMARDs)) and
some patients were also treated with biologics (adalimu-
mab, etanercept, infliximab, anakinra and rituximab).
Patients were diagnosed with RA at least three years
before surgery and 70% of patients for whom data were
available were rheumatoid factor (RF)-positive. Excised tis-
sues were immediately snap-frozen in liquid nitrogen and
stored at -80°C. Each tissue was used for both histology
and RNA extraction. For cryo-sectioning, samples were
brought briefly to -20°C, sectioned and immediately
returned to -80°C to maintain RNA integrity. All tissues
used for downstream studies were prospectively random-
ized during processing and sectioning, prior to expression
analysis, to minimize technical batch effects in the data.

RNA isolation
Frozen samples were weighed and homogenized in RLT
buffer (Qiagen, Valencia, California, USA) + β-mercap-
toethanol (10 μl/ml) at a concentration of 100 mg/ml.
Prior to isolating RNA using an RNeasy minikit (Qiagen)
with on-column DNase digestion, samples were digested
with Proteinase K (Qiagen) for 10 minutes at 55°C.

Histopathology and immunohistochemistry
Stains were performed on 5-μm-thick frozen sections of hu-
man synovial tissue fixed in acetone. Some sections were
stained with hematoxylin and eosin for histologic evaluation.
Other sections were blocked in 10% serum for 30 minutes
and stained for the detection of cells expressing the following
lineage markers (CD20 - mouse anti-human clone L26, 5 μg/
ml, Dako (Carpinteria, California, USA); CD3 - rabbit anti-
human antibody SP7, 1:200 dilution, NeoMarkers (Fremont,
California, USA) and CD68 - mouse anti-human clone KP-1,
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2.5 μg/ml, Dako). All immunohistochemical stains were de-
tected with species specific, biotinylated secondary antibodies
and 3,3′-diaminobenzidine (DAB).

Microarray hybridization
The protocols for preparation of cRNA and for array
hybridization were followed as recommended by Affy-
metrix, Inc. (Santa Clara, CA, USA). Samples were hybrid-
ized to GeneChip® Human Genome U133 Plus 2.0 Arrays
(Affymetrix, Inc.). Arrays were washed and stained in the
Affymetrix Fluidics station and scanned on a GeneChip®
scanner 3000. Expression signals were obtained using
the Affymetrix GeneChip® operating system and ana-
lysis software.

Microarray data analyses
Microarray data for all samples are freely available for
download [GEO:GSE48780] [17,18]. Statistical analysis
of microarray data was performed with the open-source
tools available in the statistical programming environ-
ment R [19] and the Bioconductor project [20]. Micro-
array data was normalized using the robust multichip
average method (RMA) [21,22]. This approach included
three steps: background correction, quantile normalization
and summarization. Following RMA processing, probe
sets were filtered to exclude those that are believed to
cross-hybridize or show other deficiencies according to
the Affymetrix quality assessment classification (only A-
class probes were included). In addition, probe sets with-
out an Entrez ID-mapping were excluded. Microarray data
were further filtered to a single probe set per gene. For
genes with multiple probesets, only the probe set with the
largest variance was used [23].
For the primary analysis of the University of Michigan

samples, probe sets were further filtered retaining the
top 40% most variable genes based on their SD across all
samples [24]. Probe sets were then centered and scaled.
In order to identify groups of samples that showed simi-
lar expression profiles, we used agglomerative hierarch-
ical clustering (Ward’s method, Euclidean distance on
scaled and centered data). We divided the samples into
groups based on the resulting clustering. The optimal
number of groups was selected via two common metrics
that quantify the tightness of clustering by considering the
distance between samples within a group and the inter-
group distance: mean silhouette width and k-nearest
neighbor distances. We calculated these metrics for be-
tween three and eight groups, and both metrics indicated
that separating the samples into five groups minimized
the within-group sample distance and maximized the
between-group distance. For testing cluster robustness, we
used a re-sampling approach in which we randomly ex-
cluded five samples from the dataset, then selected the top
40% highest variance genes and performed clustering
using the partitioning around medoids (PAM) algorithm
with k = 5. The frequency with which a pair of samples
was found in the same cluster in a given re-sampling was
calculated for all pairs. Significantly over-represented
pathways between the phenotypes were identified using
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) tool [25]. For each phenotype a set
up-regulated and a separate set of downregulated genes
was identified by comparing samples from that phenotype
with all other samples and selecting genes that were differ-
entially expressed at a false discovery rate (FDR) cutoff of
0.01. These differentially expressed sets were used as input
to the DAVID tool using the default parameters recom-
mended by the developers. Outputs from the DAVID ana-
lysis, including levels of genes from each process within
the four synovial groups as defined by their t-statistic
values and P-values, are available in the Additional
files 1 and 2. The external dataset GSE21537 was down-
loaded from the GEO database, and was normalized and
background-corrected using the variance stabilization and
normalization (VSN) for microarray.

Gene set analysis
Pathway level analysis was carried out using gene set en-
richment analysis (GSEA), using the Bioconductor GSEAlm
package [26]. Gene sets used in the analysis comprised the
Molecular Signatures DataBase (MSigDB) from the Broad
Institute [27], purified immune-cell type-specific gene ex-
pression [28], and a manually curated list of genes associ-
ated with angiogenesis processes. In addition, gene sets
were defined based upon gene expression from microarray
analysis of in vitro stimulated sorted blood monocytes
(CD14+) that underwent classical activation (M1) with
lipopolysaccharide (LPS) and IFNγ versus alternative acti-
vation (M2) with IL-4 and IL-13 for 24 hours, as well as
in vitro stimulation of primary synovial fibroblasts from
RA patients with TNFα or media-only control for 6 hours.
All genes in each of the gene sets are listed in Additional
file 3: Table S1. Summary gene-set scores were calculated
using a quartile trimmed mean of the normalized probe-
set values present in the gene set. Statistical significance of
gene-set scores between the different synovial phenotypes
was calculated using the t-test followed by Benjamini-
Hochberg correction of P-values [29].
Group-specific genes for the myeloid, lymphoid and fi-

broid phenotypes were defined by identification of genes
that were differentially expressed between each pair of
groups using a moderated t-statistic (FDR <0.01), and
then a list of genes was assembled for each group of the
genes that were upregulated between that group and one
or more others. Any gene that was differentially expressed
between more than one pair of groups was discarded and
the top 100 upregulated genes for each group were se-
lected based on P-value ranking. Genes are listed in
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Additional file 3: Table S1. To assess relationships be-
tween the group-specific gene sets and response to
anti-TNFα treatment, each group-specific gene set was
mapped to the microarray expression dataset generated by
[15] utilizing all available matching genes. Receiver-
operating characteristic (ROC) analysis was performed
using continuous gene-set scores compared against the
European League Against Rheumatism (EULAR) good-
versus-poor response criteria to anti-TNFα treatment, and
area under the ROC curve (AUC) was determined for
each gene set.

Serum biomarker assessments in the ADalimumab
ACTemrA (ADACTA) clinical trial
Serum samples from 198 of the 326 patients in the
ADACTA trial (ClinicalTrials.gov Identifier: NCT01119859)
[30], where written consent had been given for exploratory
biomarker analysis, were assessed for baseline pre-treatment
levels of soluble intercellular adhesion molecule 1 (sICAM1)
and C-X-C motif chemokine 13 (CXCL13) using custom-
ized electrochemiluminescence assays incorporating sam-
ple diluent blocking reagents to minimize interference
from heterophilic antibodies. Biomarker subgroups were
defined as low (below pretreatment median) or high
(equal to or greater than pretreatment median) for each of
the two markers. Relative treatment effectiveness (week-
24 ACR50 criteria) of adalimumab compared with toci-
lizumab was assessed by logistic regression for each
biomarker-defined subgroup. An odds ratio >1.0 and <1.0
than one correspond to favorable outcomes for adalimu-
mab or tocilizumab respectively. Subpopulation treatment
effect pattern plot (STEPP) analysis [31] was also performed
on relative treatment effectiveness (week-24 ACR50 re-
sponse) of adalimumab compared with tocilizumab for
these two biomarkers. Assessment of statistical significance
between subgroups was assessed using the Fisher exact test.
ROC analysis was performed using continuous serum bio-
marker values compared against achievement of ACR50 re-
sponse at 24 weeks for adalimumab or tocilizumab, and the
AUC was determined.

Results
Molecular phenotypes in RA synovium
Gene expression profiles of synovial tissues from 49 sub-
jects with clinically diagnosed RA were subjected to
unsupervised hierarchical clustering (HCL) in order to
assess transcriptional heterogeneity and identify putative
phenotypes of RA. We identified five main clusters of
patient samples (C1 to C5) (Figure 1A). These clusters
were visualized using principal components analysis of
the scaled and centered data (Additional file 4: Figure
S1A) and samples from clusters C1 to C4 showed differ-
ences along principal components 1 and 2, whereas sam-
ples from C5 were not well-separated in these two
projections. We further assessed cluster robustness using
several additional statistical methods (discussed in
Additional file 4: Figure S1B and C) that further confirmed
C5 was not well-separated and distinct from C4. We there-
fore conducted all further analyses on clusters C1 to C4.
To characterize putative phenotypes of RA according

to their pathway composition we first identified sub-
sets of genes that were specifically upregulated within
each of the four clusters using a one-versus-all ap-
proach (see Methods). Each of the cluster-specific gene
lists was then subjected to keyword over-representation
analysis using DAVID. Immune response genes were
abundant in both C1 (now termed the lymphoid pheno-
type) and C2 (myeloid phenotype), with the C1 lymphoid
gene sets highly restricted to B and/or T lymphocyte acti-
vation and differentiation, immunoglobulin production,
and antigen presentation together with enrichment of
cytokine signaling including the Jak/STAT pathway and
IL-17 signaling (Figure 1B). In contrast, the gene sets up-
regulated in the C2 myeloid group were also enriched for
immune function, but were characterized by processes as-
sociated with chemotaxis, TNFα and IL-1β production,
Toll-like receptor and nucleotide-binding oligomerization
domain (NOD)-like receptor signaling, Fcγ-receptor-
meditated phagocytosis, and proliferation of mononuclear
cells. Cluster 3 (designated a low inflammatory phenotype)
showed only enrichment for inflammatory response and
wound response processes. The remaining C4 cluster,
designated the fibroid phenotype, was enriched for genes
associated with transforming growth factor (TGF) β sig-
naling, bone morphogenetic protein (BMP) signaling
together with associated Sma Mothers Against Decapenta-
plegic (SMAD) binding, as well as endocytosis and cell
projection processes (Figure 1B) but lacked enrichment of
any immune system processes. We further confirmed that
the identified processes of interest were not solely driven
by a small set of recurring genes, by directly comparing
each gene set identified by the DAVID analysis with each
other and observing that their overlap was generally low
(Additional file 5: Figure S2). However, these analyses also
suggested certain biological processes might reflect similar
gene expression profiles occurring together in the same
patients, for example, Toll-like receptor signaling,
NOD-like receptor signaling, and Fc-γR-mediated
phagocytosis occurred together primarily in the mye-
loid group, whereas processes such as antigen pro-
cessing and presentation overlapped with both lymphoid
group processes such as B and T cell activation and mye-
loid group processes such as FcγR-mediated phagocytosis
and mononuclear cell proliferation, as might be ex-
pected based upon their connected immunological
roles. Further, examination of genes that were spe-
cifically downregulated within each of the four clus-
ters indicated the C4 fibroid cluster had significant
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Figure 1 Stratification of rheumatoid arthritis (RA) transcriptional heterogeneity into homogeneous molecular phenotypes.
(A) Two-dimensional hierarchical clustering of approximately 7,000 probes (rows), representing quantile-normalized and scaled expression values
of the top 40% most variable probe sets (variability assessed using SD), in 49 RA patients (columns) inferring five molecular subgroups of synovial
tissues. Patient-sample ordering and dendrogram based on agglomerative hierarchical clustering (Ward method): resulting tree used to select
patient subgroups; number of patient subgroups selected to maximize mean silhouette width and k-nearest neighbor distances (k = 5
considered optimal). z-score-based color intensity scale for each probe in each sample is shown. Patient samples clustering into five main
branches are color-coded left to right (bottom of the heatmap): C1 = red (n = 8), C2 = purple (n = 14), C3 = gray (n = 16), C4 = green (n = 8),
C5 = light blue (n = 3). (B) Heatmap depicting over-represented Database for Annotation, Visualization and Integrated Discovery biological
process categories for genes upregulated in the four largest synovial clusters. Each column represents one cluster (C1 to C4), color-coordinated
as in panel A. Each row corresponds to a biological process category. Heatmap colors reflect log10 (adjusted P-value) from modified Fisher exact test
for categorical over-representation. Annotation for each cluster based on the key biological processes is indicated. BMP, bone morphogenetic protein;
TGF, transforming growth factor; SMAD, Sma Mothers Against Decapentaplegic; NOD, nucleotide-binding oligomerization domain; JAK-STAT, Janus
kinase-signal transducer and activator of transcription.
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downregulation of multiple immune-system processes
associated with B cells, immunoglobulins, myeloid
cells, innate immune response, including NOD-like re-
ceptor signaling, and chemotactic processes (Additional
file 6: Figure S3A). In contrast, the C1 cluster had sig-
nificant downregulation of TGFα and Wnt signaling
together with processes associated with mesenchymal
cell proliferation, proteolysis, cellular transport and
RNA metabolism and processing, whereas both the
C2 and C1 clusters had decreased representation of
processes associated with transcription and splicing. As
observed for the upregulated gene processes, the overlap
between downregulated gene processes was also low
(Additional file 6: Figure S3B).
Next, we assessed histological specimens, derived from

the tissues used for microarray analysis, for cellular com-
position and the presence of cellular aggregates reflective
of local B and T cell proliferation and lymphoid neogen-
esis. Representative tissue sections for each cluster were
stained with cell-type-specific markers for T cells (CD3)
and B cells (CD20) to assess the lymphocyte content of
samples (Figure 2A). The results corroborated cellular
differences observed in their respective gene-expression
profiles. Samples in the lymphoid cluster were enriched
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Figure 2 Rheumatoid arthritis (RA) molecular phenotypes
reflect cellular and biological differences. (A)
Immunohistochemical detection of T cells (CD3) and B cells (CD20)
in synovial tissue sections. Columns correspond to representative
sections for each of the RA molecular phenotypes designated by
color-coordinated bars on top. Scales on images refer to a length of
500 microns. (B) Fluorescence activated cell-sorting analysis of fresh
synovial tissue samples. Cells were stained with CD3- and CD20- gated
by forward and side-scatter lymphocyte parameters and fluorescent
intensities plotted in a scatter-plot with T cells (CD3) on the y-axis and
B cells (CD20) on the x-axis (top panel). Contour-plots from the same
patients above showing macrophages (CD45+, lymphocyte-gate
exclusion) along the y-axis and fibroblasts (CD90) along the x-axis
(bottom panel). Samples are arranged left to right according to their
phenotype membership as in panel A. (C) Bar plots of the percentages
of patient synovial tissues that contained non-aggregated (Agg-) or
aggregated (Agg+) cellular infiltration as determined by
immunohistological assessment of CD3- and CD20-positive cells.
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for CD20-positive B cells, whereas CD3-positive T cells
were present at varying levels in samples from all the
major clusters. Using fluorescence-activated cell sorting
(FACS) analysis of representative dissociated synoviocyte
samples from each cluster (Figure 2B) we found fibro-
blasts (CD45-/CD90+), macrophages (CD45+/CD90-) and
T cells (CD3+) to varying degrees in all clusters, whereas
B cells (CD20+) were restricted to lymphoid and myeloid
clusters, but were more abundant in lymphoid. Further,
histologic cellular aggregates reflecting proliferating B and
T cells were abundant in lymphoid samples, present but
less abundant in myeloid and low inflammatory samples,
and absent in the fibroid samples (Figure 2C).

Assessment of gene expression and gene sets in RA
synovial clusters
To further assess the underlying cellular and pathway
representation of the identified RA synovial phenotypes,
we examined the expression of genes with well-understood
biological function that showed differential expression
across the RA phenotypes (Figure 3A). The myeloid
phenotype had the highest amongst the synovial sub-
groups of levels of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway genes,
including TNFα, IL-1β, IL-1RA, ICAM1, and MyD88,
the inflammatory chemokines CCL2 and IL-8, and
granulocyte and inflammatory macrophage lineage genes
such as S100A12, CD14 and OSCAR. In contrast, the
lymphoid phenotype had the highest expression of B cell-
and plasmablast-associated genes including CD19, CD20,
XBP1, immunoglobulin heavy and light chains, CD38 and
CXCL13. The fibroid phenotype had low or absent ex-
pression of these genes and instead had elevation of
genes associated with fibroblast and osteoclast/osteoblast
regulation such as FGF2, FGF9, BMP6, and TNFRSF11b/
osteoprotogerin. In addition, this phenotype had higher ex-
pression of components of the Wnt and TGFβ pathways.
The low inflammatory phenotype showed expression of
genes associated with all of the previous phenotypes, indi-
cating this contains representation of all of the prior phe-
notypes. In addition, expression of IL-6, the IL-6 receptor
components IL-6R and IL-6ST/gp130, and associated sig-
naling component STAT3 was broadly observed across all
phenotypes, consistent with the multiple roles of the IL-6
pathway in both lymphocyte and fibroblast biology [32].
We further assessed biological processes associated with

the synovial phenotypes using experimentally derived gene-
set modules representing a spectrum of hematopoietic
lineage cells derived from specific expression in purified
classically activated M1 monocytes, alternatively activated
M2 monocytes, B cells, T cells, TNFα-stimulated synovial
fibroblasts and angiogenesis-associated genes (see Methods
and Additional file 3: Table S1 for a list of the module
genes). The lymphoid phenotype was enriched specifically
for B-cell modules (Figure 3B) whereas the myeloid
phenotype was enriched for inflammatory M1 monocytes
and TNFα-induced modules (Figure 3D, E). In contrast,
T-cell genes were expressed similarly in both lymphoid
and myeloid phenotypes (Figure 3C). The M2 monocyte
module was expressed most highly in the low inflamma-
tory phenotype (Figure 3F) while the angiogenesis module
was highest in the fibroid phenotype and lowest in the
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lymphoid phenotype (Figure 3G). Application of the
M1-monocyte and B-cell gene sets to two additional RA
synovial datasets showed consistent differential expression
patterns to those observed in the initial training dataset,
further indicating that these molecular axes define a large
proportion of the transcriptional heterogeneity found in
the RA synovium (Additional file 7: Figure S4). Further,
patients with lower levels of B cell and M1 monocytes had
increased levels of fibroid subset genes consistent with
the pattern seen in the training data set (Additional
file 7: Figure S4B-D). Further, survey of tissue sections
characterized by high or low levels of B lymphocytes
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determined by immunohistochemistry compared with the
magnitude of a B-cell gene-set score demonstrated
the correlation between histology and gene-set data
(Additional file 8: Figure S5). These gene expression
data support the notion that there are at least two in-
flammatory axes of disease in the RA synovium compris-
ing activation of B cells and activation of inflammatory
monocytes that are not completely overlapping, whereas
other synovial tissues display a low inflammatory pauci-
immune phenotype with potential angiogenic, osteoclast/
osteoblast dysregulation and fibroblast activation processes
in action. Consistent with lack of immune system involve-
ment in the fibroid synovial phenotype, we observed that,
for the patients who had available data on serological sta-
tus, 100% of lymphoid- and myeloid-phenotype patients
were RF-positive, 75% of the low inflammatory phenotype
patients were RF-positive, and in contrast the fibroid
phenotype patients were RF-negative.

Clinical response to targeted therapies
Given the over-representation of myeloid and TNFα-
associated gene expression in the myeloid phenotype, we
hypothesized that patients who displayed this inflamma-
tory synovial phenotype would have the best clinical re-
sponse to anti-TNFα treatment as compared with the
inflammatory lymphoid phenotype. To test the ability of
these predefined synovial phenotypes to identify thera-
peutic response to TNFα blockade, we interrogated a pa-
tient cohort synovial gene-expression dataset (GSE21537
[15], a study that used the anti-TNFα agent infliximab)
using pre-specified myeloid and lymphoid gene sets that
were derived using an unbiased statistics-based approach
from the training cohort data described in Figures 1, 2
and 3 (see Methods). The GSE21537 dataset used a dif-
ferent, non commercial, microarray platform in contrast
to the Affymetrix platform utilized for the training set,
which required the predefined phenotype gene sets to be
mapped onto the GSE21537 microarray expression data-
set. Baseline gene-set scores were compared against pa-
tient subgroups defined by their EULAR clinical response
(good versus poor) to anti-TNFα treatment based upon
improvement in the disease activity score from 28 joints
(DAS28) at 16 weeks. Strikingly, we observed that baseline
expression of the myeloid gene set was significantly higher
in patients with good EULAR response compared to non
responders (P = 0.011, Figure 4A). In contrast, the lymph-
oid gene set, despite also marking inflammatory synovial
processes, did not show association with clinical outcome
(P = 0.26, Figure 4B) and the fibroid phenotype gene set
was also unaltered between good and poor responders
(P >0.5, Figure 4C).
These results were further confirmed by additional ana-

lysis of this dataset using the previously utilized gene sets,
which showed that the pretreatment biological process
most strongly associated with good versus poor response
to anti-TNFα therapy was classically M1 activated M1
monocytes (P = 0.006, Figure 4D), whereas in contrast
neither the B-cell or T-cell gene sets showed no signifi-
cant association with response (Figure 4E and F, P = 0.18
and P = 0.9 respectively). We further observed trends
in association of pretreatment levels of M2 alterna-
tively activated monocytes (P = 0.054, Additional file 9:
Figure S6A) and TNFa-treated synovial fibroblasts (P= 0.08,
Additional file 9: Figure S6B), whereas angiogenesis pro-
cesses were significantly associated with good response
(P = 0.018, Additional file 9: Figure S6C). In addition, we
conducted ROC analysis of the gene sets versus EULAR
response, and calculation of the AUC revealed that, con-
sistent with the above findings, the myeloid and M1 clas-
sically activated monocyte gene sets produced the largest
AUCs (0.65, Additional file 10: Figure S7A; and 0.77,
Figure S7D respectively). These data indicate that ap-
plication of predefined molecular synovial phenotypes,
namely the myeloid phenotype and associated M1-
activated monocytes, has the potential to enrich for re-
sponders to anti-TNFα therapy and that pretreatment
levels of these biological processes were most strongly
associated with anti-TNFα therapeutic outcome.

Derivation of serum biomarkers from differential synovial
gene expression
Given the observation that synovial heterogeneity affects
treatment outcome to anti-TNFα therapy, we investigated
whether we could identify differential gene expression in
the inflammatory synovial phenotypes that might be
reflected as circulating biomarkers in peripheral blood.
Using the F-test on the original synovial gene-expression
dataset, we identified genes that differed between the syn-
ovial phenotypes, and then identified genes that best dif-
ferentiated one synovial phenotype compared with all
others using the pairwise t-test between all pairs of groups
(P <0.001, multiple-hypothesis test correction using the
Benjamini-Hochberg method), and further assessed genes
encoding potential soluble biomarkers with a positive
t-statistic value in each phenotype. We focused on two
biomarkers: ICAM1, differentially expressed in the mye-
loid phenotype (Figure 5A), and CXCL13, enriched in the
lymphoid phenotype (Figure 5B).
We developed immunoassays to determine levels of

circulating soluble ICAM1 (sICAM1) and CXCL13 in
serum, and tested pretreatment samples from patients
with active RA enrolled in the ADACTA trial (below).
We observed that both serum biomarkers were signifi-
cantly higher in disease compared with samples from non-
disease control donors (Figure 5C, D) but importantly were
only weakly correlated with each other (Spearman P <0.33,
Figure 5E) suggesting they are reflective of different inflam-
matory immune processes.
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Figure 4 Pretreatment magnitude of gene sets derived from the synovial myeloid phenotype and classically activated monocytes
correlates with clinical response to anti-TNFα (infliximab) therapy. Analysis of synovial tissue microarray data from 62 rheumatoid arthritis
patients in GSE21537 prior to initiation of infliximab (anti-TNFα therapy). Scores for gene sets for phenotypes, defined from the Michigan cohort
training data, as well as gene sets derived from purified immune cell lineages (see Methods), were calculated from the GSE21537 data and
compared against anti-TNFα clinical outcome at 16 weeks as defined by European League Against Rheumatism (EULAR) response criteria as
assigned in GSE21537. Scores versus EULAR response are plotted for the synovial myeloid phenotype (A), lymphoid phenotype (B), fibroid
phenotype (C), as well as classically activated M1 monocytes (D), B cells (E) and T cells (F). Statistical significance for good compared with poor
EULAR response for the level of each gene-set module was calculated based upon the t-statistic (* = P ≤0.05, **P ≤0.01).
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sICAM1 and CXCL13 define RA subpopulations with
differential clinical outcomes to adalimumab (anti-TNFα
compared with tocilizumab (anti-IL-6R) therapy
We finally assessed whether baseline levels of sICAM1
and CXCL13 were differentially associated with subsequent
treatment outcome to adalimumab compared with toci-
lizumab, as we hypothesized based upon the previous re-
sults that a population with elevated levels of a myeloid
biomarker have elevated clinical response to anti-TNFα
therapy but that elevation of a lymphoid marker would
not. We utilized pretreatment samples from the ADACTA
trial, a randomized, double blind, controlled phase-4 head
to head study of tocilizumab (a humanized monoclonal
antibody that binds to membrane-bound and soluble forms
of the human IL-6 receptor) monotherapy, compared with
adalimumab (a fully human monoclonal antibody against
TNFα) monotherapy, in methotrexate-intolerant patients
with active RA [30]. This trial was notable as it allowed an
initial assessment of biomarker-defined populations within
the same trial against two different targeted therapies.
As this was a post hoc exploratory analysis without pre-
specified biomarker thresholds, we first assessed each bio-
marker individually using the median as a cutoff to define
biomarker-low and biomarker-high subpopulations.
An additional motivation to employ categorical analysis

of predictor variables stemmed from the presence of left-
censored (below the lower limit of quantification (LLOQ))
observations for baseline levels of CXCL13 where 9.6%
(19 of 198 samples) were observed to have values lower
than the LLOQ, and categorical analysis was used to ac-
commodate left-censored data, and avoided potential bias
that may result from imputation of left-censored data in
parametric analyses. We initially observed that there was a
differential relationship between clinical outcome to each
therapy and baseline biomarker levels: patient populations
with lower sICAM1 levels, the myeloid phenotype bio-
marker, or higher CXCL13 levels, the lymphoid phenotype
marker, were associated with lower likelihood, as defined
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by the odds ratio, of week-24 ACR50 response to adalimu-
mab compared with tocilizumab (Figure 6A). Given these
reciprocal associations, we next looked at the two bio-
markers in combination, both using the biomarker median
values for each as cutoffs as well as continuous biomarker
values. These analyses further indicated that heteroge-
neous treatment effects were present, as the patient popu-
lation with high sICAM1 but low CXCL13 had higher
likelihood of ACR50 response to adalimumab compared
with tocilizumab, whereas conversely there was a higher
likelihood of ACR50 response to tocilizumab compared
with adalimumab in patients with high CXCL13 but low
sICAM1 (Figure 6B). Importantly, the differences in rela-
tive treatment effectiveness among biomarker-defined
subgroups were borne out by contrasting absolute ACR
responses among both treatment arms (Figure 6C, D) as
opposed to heterogeneous responses observed only in a
single treatment arm. Assessing each drug treatment arm
separately, using week-24 ACR20, ACR50 and ACR70
response-rates across biomarker median-defined patient
subgroups, showed that sICAM1-high/CXCL13-low pa-
tients had the highest clinical responses from adalimumab
treatment (Figure 6C, E) compared to the other patients
in the treatment arm (ACR20 Δ = 46%, P = 0.005; ACR50
Δ = 29%, P = 0.05; and ACR70 Δ = 16%, P-value not sig-
nificant (Fisher exact test)). Conversely the sICAM1-low/
CXCL13-high patients had the highest responses to toci-
lizumab (Figure 6D, E; ACR20 Δ = 20%, P-value not sig-
nificant; ACR50 Δ = 49%, P = 0.004; and ACR70 Δ = 45%,
P = 0.004 (Fisher exact test)). In addition, the remaining
biomarker-defined subgroups (high/high and low/low) ex-
hibited intermediate ACR50 response rates for both ther-
apies (Figure 6E). These differences were also consistent
in the trends for change in DAS28-erythrocyte sedimenta-
tion rate (ESR) (± standard error) at 24 weeks for ada-
limumab (-2.3 ± 0.37 for sICAM1-high/CXCL13-low patients
compared with -1.1 ± 0.33 for sICAM1-low/CXCL13-high
patients) and tocilizumab (-3.6 ± 0.32 for sICAM1-low/
CXCL13-high patients compared with -3.2 ± 0.37 for
sICAM1-high/CXCL13-low patients). The biomarker-
defined subgroup efficacy results for each therapy,
including odds ratios for ACR50 response, are sum-
marized in Table 1.
sICAM1 and CXCL13 biomarker populations were de-

fined by cutoffs determined by the median values. We
explored the heterogeneity of the relative treatment ef-
fect using alternative biomarker cutoffs using STEPP
analysis. Assessment of individual biomarkers showed
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Figure 6 Lymphoid (C-X-C motif chemokine 13 (CXCL13)) and myeloid (soluble intercellular adhesion molecule 1 (sICAM1)) serum
biomarkers define rheumatoid arthritis patient subgroups with differential clinical response to anti-TNFα (adalimumab) compared with
anti-IL-6R (tocilizumab) in the ADACTA trial. Relative treatment effectiveness (week-24 American College of Rheumatology (ACR)50 response)
of adalimumab compared with tocilizumab was assessed by logistic regression for (A) each individual biomarker and (B) biomarker combination-
defined subgroups using their respective medians as cutoffs (see Methods). Relative treatment effectiveness for adalimumab versus tocilizumab is
represented by odds ratio and 95% CI for ACR50 response. Week-24 ACR20 (gray), ACR50 (green), and ACR70 (purple) response rates (%) per
biomarker-defined subgroup are represented by radial plot for adalimumab (C) and tocilizumab (D) treatment arms. The direction of each radial
line corresponds to a biomarker subgroup as follows: sICAM1 low (bottom) and high (top), CXCL13 low (left) and high (right). Low and high
designations refer to biomarker values above and below their respective medians. Distance from radial plot center indicates response rate.
Summary of week-24 ACR50 response rates for sICAM1-high/CXCL13-low, sICAM1-high/CXCL13-high, sICAM1-low/CXCL13-low and sICAM1-low/
CXCL13-high ADACTA RA patients (E). The treatment-effect deltas between sICAM1-high/CXCL13-low and sICAM1-low/CXCL13-high patient
groups are indicated for both adalimumab and tocilizumab.
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that increasing levels of sICAM1 were associated with
increasing likelihood of ACR50 response to adalimumab
versus tocilizumab (Additional file 11: Figure S8A) but
increasing levels of CXCL13 were associated with decreas-
ing ACR50 response to adalimumab versus tocilizumab
(Additional file 11: Figure S8B). Further, examination of con-
tinuous levels of both biomarkers using two-dimensional
STEPP analysis also showed the highest likelihood of
ACR50 response to adalimumab versus tocilizumab in pa-
tients with the highest levels of sICAM1 but the lowest
levels of CXCL13 (Additional file 11: Figure S8C), whereas
conversely, the lowest likelihood of response to adalimu-
mab versus tocilizumab was observed in the patient popu-
lation with the lowest sICAM1 and highest CXCL13
levels. These data suggest that further differentiation of
relative treatment effect may be observed using optimized
cutoffs, as determined in a prospective study.
Finally, ROC analysis was performed to assess the pre-

dictive ability for ACR50 response of these two biomarkers
on an individual patient basis. sICAM1 and CXCL13
showed only modest predictive ability for adalimumab or
tocilizumab on an individual patient basis based upon
their respective AUCs (0.57 and 0.6 respectively, Additional
file 12: Figure S9A, D), whereas assessment of the two
Table 1 Summary of baseline biomarker-defined subgroup ef

Biomarker subset, number ADA ACR20 (%) ADA ACR50 (%) A

sICAM1high/CXCL13low (26) 73 42

sICAM1low/CXCL13high (15) 27 13

sICAM1high/CXCL13high (32) 50 28

sICAM1low/CXCL13low (33) 52 24

Biomarker subset, number TCZ ACR20 (%) TCZ ACR50 (%) T

sICAM1high/CXCL13low (15) 60 20

sICAM1low/CXCL13high (26) 81 69

sICAM1high/CXCL13high (26) 58 42

sICAM1low/CXCL13low (25) 60 44

Data are shown for American College of Rheumatology (ACR) 20, 50 and 70 respon
sedimentation rate (ESR) (± standard error, SE), and odds ratio with 95% CI for ACR
biomarkers in combination showed slight increases in the
respective AUCs (Additional file 12: Figure S9C, D, E, F).
In totality, these data illustrate the concept that mye-

loid and lymphoid phenotype-derived circulating bio-
markers can together define RA patient subpopulations
that show differential clinical response to therapies di-
rected at different targets, and that myeloid-dominant
patient populations with high levels of sICAM1 and low
levels of CXCL13 had the most robust response to anti-
TNFα therapy.

Discussion
In this report, we describe the presence of major cellular
and molecular heterogeneity in RA synovial tissue char-
acterized by two inflammatory phenotypes dominated
by B cells and plasmablasts (lymphoid) and inflamma-
tory macrophages (myeloid) as well as a low inflammatory
pauci-immune phenotype, show that elevation of the mye-
loid, but not lymphoid axis, in synovial tissue is signifi-
cantly associated with good clinical outcome to anti-TNFα
therapy, and finally show that two systemic biomarkers
chosen based on their differential tissue expression be-
tween the inflammatory phenotypes, CXCL13 for lymph-
oid and sICAM1 for myeloid, together define RA patient
ficacy at 24 weeks in the ADACTA trial

DA ACR70 (%) ADA ΔDAS28-ESR (±SE) ACR50 odds ratio ADA
versus TCZ (95% CI)

23 −2.3 (±0.37) 2.93 (0.7-15.2)

7 −1.1 (±0.33) 0.07 (0.009-0.3)

19 −2.1 (±0.31) 0.53 (0.17-1.6)

18 −2.1 (±0.32) 0.41 (0.13-1.2)

CZ ACR70 (%) TCZ ΔDAS28-ESR (±SE) ACR50 odds ratio TCZ
vs. ADA (95% CI)

7 −3.2 (±0.37) 0.34 (0.07-1.4)

50 −3.6 (±0.32) 14.6 (3.1-108.9)

31 −3.2 (±0.37) 1.9 (0.63-5.73)

24 −2.9 (±0.36) 2.5 (0.8-7.8)

se rates, change in disease activity score in 28 joints (DAS28)-erythrocyte
50 response. ADA, adalimumab (anti-TNFα); TCZ, tocilizumab (anti-IL-6R).
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subpopulations with differential clinical response to anti-
TNFα compared with anti-IL-6R therapies.
The concept that important heterogeneity exists in RA

synovial tissue both at a histological as well as at a mo-
lecular level has been previously illustrated by several
seminal studies [8,10,33], which showed differential pres-
ence of histological synovial aggregates and diffuse syn-
ovial inflammation, as well as differential gene expression,
across RA synovial samples. The objective of the current
study was to test the idea that heterogeneous RA synovial
tissues can be assigned to subgroups that share common
patterns of gene expression, have different associated sys-
temic biomarkers, and that might respond differentially
to therapy. Thus, we employed an analysis strategy that
queried independently the questions of molecular hetero-
geneity and response heterogeneity. First, we assessed
molecular heterogeneity of RA synovium independent
of treatment response and validated proposed pheno-
types using various molecular techniques and external
patient cohorts. We next observed that core biological
modules, as defined using pathway analysis, designated
lymphoid (B cell- and plasmablast-dominated), myeloid
(macrophage and NF-κB process dominated) and fibroid
(comprising hyperplastic but pauci-immune tissues) could
be surveyed across multiple RA patient synovial tissue
cohorts to identify reproducible RA phenotypes. Import-
antly, the dominant biology associated with each gene
expression-defined subset was consistent with histological
and flow cytometry assessment of synovial tissue where
the lymphoid subset was associated with presence of histo-
logical aggregates and, the myeloid subset with more dif-
fuse immune infiltration while the fibroid subset had little
immune infiltration and complete absence of aggregates.
Further, survey of tissue sections characterized by high
or low levels of B lymphocytes determined by immuno-
histochemistry correlated with the magnitude of a B cell
gene-set score. We also observed the presence of a low in-
flammatory phenotype, indicating that synovial hetero-
geneity exists as a continuum of dysregulated biological
processes rather than absolutely discrete subsets of dis-
ease. We did not observe differences in therapeutic usage
(methotrexate, anti-TNFα agents, steroids) between pa-
tients with different synovial phenotypes where these data
were available (data not shown). However, we did note
that for the patients with data available, RF serological
positivity was restricted to the lymphoid, myeloid and a
majority of the low inflammatory phenotype patients.
These data are consistent with previously observed gene
expression heterogeneity in RA synovial tissue suggesting
there are both inflammatory and non inflammatory syn-
ovial subgroups in RA. We further observed presence of
patients with low or high inflammatory phenotypes based
upon M1-activated monocytes, B cell and fibroid gene sets
in two additional datasets, although the M1 and B cell
gene sets were not as divergent as observed in the original
training set. Reasons for this could include introduction of
additional noise and loss of sensitivity due to the different
platform used in the GSE21537 dataset resulting in loss of
data due to missing or non-mapping probes as compared
with the Affymetrix platform as well as differences in the
patient populations, as there were higher levels of fibroid
gene-set scores in both patient cohorts compared with the
training dataset, meaning decreased representation of pa-
tients in the highly inflammatory subgroups.
Indeed, it has been clearly shown that patients with high

levels of expression of inflammatory genes in the synovium
have higher levels of systemic inflammation including C-
reactive protein levels, ESRs and platelet counts as well as
a shorter duration of disease as compared to patients with
low synovial inflammation [34]. Further, absence of signifi-
cant synovial inflammation has been linked to decreased
presence of anti-citrullinated protein antibodies [35]. Con-
sistent with this finding of a pauci-immune phenotype
of RA, patients with lower levels of both synovial and
systemic inflammation have been shown to have lower
drug-response rates to both B-cell depletion therapy and
anti-TNFα [36-38].
We then assessed whether the inflammatory biological

modules would be differentially informative for predicting
the outcome of response to anti-TNFα therapy through
analysis of a large and well-defined external dataset. Strik-
ingly, patients with high pretreatment expression of genes
defined in the myeloid phenotype and M1 classically acti-
vated monocytes, but not high levels of lymphoid subset
or B-cell genes, showed a greater 16-week good EULAR
response to infliximab treatment. This is consistent with
the observation that inflammatory M1 macrophages, a
key lineage involved in production of TNFα, as well as
expression of TNFα itself along with IL-1β and NF-κB-
associated processes, are preferentially increased in the
myeloid phenotype compared with all of the others. Fur-
ther, other studies have consistently concluded that baseline
levels of synovial macrophages and TNFα gene expression
are correlated with response [13,39], suggesting the pres-
ence of TNFα-secreting classically activated monocytes
and macrophages are important for clinical outcome.
However, the EULAR moderate responders had a wide
range of values for both the myeloid and M1 genes, which
suggest that other factors will contribute to determining
treatment outcome with anti-TNFα agents. In contrast, a
large histological study demonstrated that RA patients
with high levels of synovial lymphoid neogenesis (LN),
comprising highly organized B/T cell aggregates, demon-
strated resistance to anti-TNFα therapy and good clinical
outcome in these patients was accompanied with reversal
of LN [40]. Consistent with this, we observed that the
presence of the lymphoid phenotype was not a predictor
of response to anti-TNFα despite being associated with
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the presence of synovial inflammation and histological ag-
gregates. In sum, these data suggest that simply the pres-
ence of inflammation alone is insufficient to predict
clinical outcome to anti-TNFα treatment, and rather that
sub-phenotypes of synovitis show differential clinical
benefit with the lymphoid phenotype showing greater re-
sistance to anti-TNFα as compared with the myeloid
phenotype, perhaps due in part to the presence of other
major processes driving synovitis including production of
other inflammatory mediators, LN, and robust antigen
presentation by autoreactive B cells. It is also noteworthy
that we observed an association between pretreatment ex-
pression of genes associated with angiogenesis and clinical
response to anti-TNFα, suggesting that the presence of
synovial neoangiogenesis may also contribute to favorable
outcome to blockade of TNFα.
Next, we hypothesized that the biological processes

underlying the RA phenotypes might allow for rational
serum protein biomarker selection to prospectively iden-
tify patient populations prior to starting a targeted therapy.
As synovial tissue is not readily available for prospective
assessment prior to initiation of therapy, systemic circulat-
ing biomarkers have greater potential utility although they
will likely integrate the activity of specific biological path-
ways in multiple tissues, including the secondary lymphoid
system, in addition to synovial tissue. We assessed candi-
dates that were differentially expressed in the inflamma-
tory lymphoid and myeloid subsets using a statistical
ranking, and looked for markers that were strongly ele-
vated in RA serum as compared with serum from non
disease control donors. Two markers that fulfilled these
criteria were soluble ICAM1 (myeloid) and CXCL13
(lymphoid). ICAM1, an adhesion molecule that binds
to LFA-1, is a gene that is strongly regulated by NF-
κB signaling and is upregulated on a variety of cell
types in response to TNFα signaling including synovial
fibroblasts and especially vascular endothelial cells, both
of which are highly represented in the inflammatory
rheumatoid synovium [41,42]. sICAM1 is shed from
the cell membrane by proteolytic cleavage. CXCL13 is
a B cell chemoattractant that is highly expressed by
follicular dendritic cells in secondary lymphoid tissue
and ectopic germinal centers and is induced by LTα/LTβR
signaling [43]. Further, a recent report of a small synovial
biopsy study of RA patients undergoing rituximab therapy
showed a correlation between synovial tissue expression
of CXCL13 and levels of CXCL13 protein in the serum
(r = 0.6) [44] that suggests CXCL13 expression in the
rheumatoid synovium is a major source of serum CXCL13.
Synovial and serum levels of CXCL13 have also recently
been linked with radiological joint destruction in RA pa-
tients [45], which argues that this gene, and by association
the lymphoid synovial phenotype, is linked with progres-
sive and destructive RA pathogenesis. In contrast, to our
knowledge no reports have been made to date that have
directly compared sICAM1 levels in serum with ICAM1
gene expression in synovial tissue, and we have not been
able to conduct such an analysis in this study due to
incomplete matching serum samples. Analysis of serum
samples from the ADACTA adalimumab (anti-TNFα)
compared with tocilizumab (anti-IL-6R) trial facilitated an
assessment of these biomarkers in an inflammatory RA
population that not only allowed a direct comparison of
clinical response to different targeted therapies within one
clinical study, but also avoided confounding effects of con-
comitant immunosuppression from background metho-
trexate as this study was conducted using both therapeutic
agents as monotherapy [30]. Consistent with our model of
different inflammatory axes being present in RA, we noted
that although both sICAM1 (myeloid) and CXCL13
(lymphoid) were significantly elevated in disease compared
with control samples, they were only weakly correlated to
each other. Further, we noted that patients with high pre-
treatment serum sICAM1 levels and decreased CXCL13
levels (high myeloid and low lymphoid activity) had in-
creased ACR50 and ACR70 response rates and decreased
DAS28-ESR scores to anti-TNFα therapy compared with
anti-IL-6R therapy, whereas conversely, patients with high
CXCL13 and decreased sICAM1 levels had preferential re-
sponse to anti-IL-6R compared with anti-TNFα therapy.
We did note differences in the magnitude of the differ-
ences between ACR50 response rates and changes in
DAS28-ESR between the biomarker-defined populations in
the tocilizumab arm where the changes in DAS28 were
consistent but smaller than those observed for ACR50.
These differences could not be accounted for by one com-
ponent of the response instrument, for example, ESR or
swollen-joint count, and are likely due more to differ-
ences in precision between the two instruments. These
results are consistent with the previous data showing that
patients with elevation of the myeloid inflammatory axis
had robust responses to anti-TNFα drugs, and further
emphasize that within an inflammatory RA population,
there are patient subsets that subsequently have differen-
tial clinical outcomes to different targeted therapies.
What underlying biological basis could explain why

blockade of the IL-6 pathway causes robust clinical re-
sponses in a different patient population to that respond-
ing to anti-TNFα blockade? Although IL-6 has long been
appreciated as a key inflammatory cytokine important in
the pathogenesis of RA as well as other inflammatory dis-
eases [32], its biology and expression are not completely
overlapping with that of TNFα. Our synovial tissue gene-
expression data have shown that although TNFα is
strongly associated with the myeloid phenotype and
activity of classically activated myeloid cells and NF-
κB pathway activity, IL-6, its receptors IL-6R and IL-
6ST/gp130, and the key IL-6-associated TF, STAT3,
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are more broadly expressed across the lymphoid and
low inflammatory synovial subsets (Figure 3A) and are not
highly correlated with TNFα expression or restricted to
the myeloid phenotype. Indeed, IL-6 can be induced in a
variety of cell lineages exposed to multiple inflammatory
stimuli in the joint including synovial fibroblasts them-
selves [32,46]. Further, the IL-6/IL-6R pathway signals
using the JAK/STAT pathway in contrast to the canonical
NF-κB signaling predominantly utilized by TNFα [47] and
plays a key role in inducing B cells to differentiate to
antibody-secreting cells. Importantly, anti-IL-6R therapy
has been shown to be effective in patients who are refrac-
tory to anti-TNFα therapies [48]. Thus, it is conceivable
that the IL-6/IL-6R pathway is highly involved with the
driving synovitis in the B-cell-dominant lymphoid axis as
well as potentially similarly important in driving synovitis
in the low inflammatory subset, whereas in contrast,
within the activated monocyte-dominated myeloid axis
the TNFα pathway is dominant in driving synovitis such
that blockade of IL-6 signaling is less effective. Whilst
intriguing, and consistent with the biological hypotheses
developed based upon our synovial tissue analyses, the
findings described here represent only an initial testing of
the sICAM1/CXCL13 biomarker hypothesis without a
predefined cutoff for the analysis, hence our utilization of
the median as the cutoff for this analysis, and the statis-
tical power was limited by available patient numbers and
multiple testing issues. Furthermore, analysis of these bio-
markers on an individual patient basis using ROC analysis
showed that they have only modest predictive ability
for ACR50 outcome to adalimumab or tocilizumab at
24 weeks. Therefore, although the biomarkers described
here demonstrate the presence of populations of RA pa-
tients with differential clinical response to targeted therap-
ies, they do not presently have strong clinical utility for
decision-making for individual patients. Improvement of
individual patient predictive-ability might be achieved by
incorporation of additional biomarkers into a predictive
model that could be subjected to rigorous confirmatory
studies in larger patient cohorts treated with anti-TNFα
and anti-IL-6/IL-6R blocking agents including combin-
ation treatment with methotrexate, with incorporation of
prespecified cutoff values in the analysis plan. Indeed, the
two-dimensional STEPP analysis performed in this study
suggested that altering the biomarker threshold cutoffs for
both sICAM1 and CXCL13 could yield greater efficacy
differentials for ACR50 response rates between adalimu-
mab and tocilizumab than those achieved by using their
respective medians.
Additional limitations of this study include limited avail-

ability of clinical data in the RA cohort used for the initial
gene-signature discovery owing to the retrospective nature
of interrogation of clinical chart data after sample collec-
tion from joint surgery, and a lack of consent for chart
review in some cases. In particular, there were incomplete
or missing data for serological autoantibody status for RF
or anti-citrullinated protein antibodies. Also, the RA pa-
tient population studied for synovial gene expression rep-
resents late-stage disease where patients received joint
surgery to correct deformity, replace joints, or manage
pain. This study also does not address the presence and
stability of synovial phenotypes longitudinally from early
to late-stage disease and with respect to development of
bone erosion. Finally, in the current study we have not ap-
plied an exhaustive investigation of all the potential serum
biomarkers that may correlate with synovial subtypes, in
part due to the desire to minimize multiple testing issues
due to the limited number of anti-TNFα-treated patient
samples available for biomarker analysis. These important
questions are being addressed in a series of follow-up pro-
spective studies.

Conclusions
Utilizing genome-wide expression analysis of synovial tis-
sues from a large RA cohort, we have defined distinct mo-
lecular and cellular phenotypes that reflect the considerable
heterogeneity present in the RA synovium. In particular,
two distinct inflammatory axes emerge from this analysis:
one dominated by B cells and the other dominated by in-
flammatory macrophages and NF-κB-activating cytokines,
such as TNFα. It is important to point out that these cellu-
lar and molecular signatures, as well as the RA patients,
represent a continuous rather than a discrete distribution,
as is evident from the presence of lower inflammatory pa-
tients with intermediate molecular characteristics between
these polar phenotypes. Analysis of respective gene-set
modules and serum biomarkers suggest differential clinical
response to anti-TNFα and anti-IL6R therapy is dependent
in part on the presence of these inflammatory axes. A fur-
ther subgroup of patients presented with a pauci-immune
phenotype lacking major B cell or macrophage infiltration
and may reflect a distinct subgroup of patients. These syn-
ovial phenotypes explain some of the underlying clinical
and drug response heterogeneity in RA, and identifying and
stratifying patients prospectively with respect to their syn-
ovial phenotype, for example by using blood biomarkers,
may be important in making therapeutic decisions for tar-
geting therapies. Such considerations are also likely to be
very important for clinical trial design for new therapies to
select patients prospectively for increased clinical response
rates, and for the design of clinical studies to differentiate
targeted therapies with different mechanisms of action.
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subgroups. For each gene, we report differential gene expression
between each group and all other samples. We provide the t-statistic
values (positive or negative) with associated P-values for each group.
L = lymphoid, M =myeloid, X = low inflammatory, F = fibroid.

: Lists of the Database for Annotation, Visualization
and Integrated Discovery (DAVID) biological process genes
represented within the downregulated genes in the synovial
subgroups. For each gene, we report differential gene expression
between each group and all other samples. We provide the t-statistic
values (positive or negative) with associated P-values for each group.
L = lymphoid, M =myeloid, X = low inflammatory, F = fibroid.

: Table S1. List of genes utilized in gene set
enrichment analyses.

: Figure S1. Assessment of robustness of synovial
gene expression heterogeneity. (A) Principal component analysis
showing the first (x-axis) and second (y-axis) components of variation
over approximately 7,000 probes and 49 patients using the prcomp
R-function on quantile-normalized expression data. Each patient tissue is
color-coded according to the groupings in Figure 1A, and grouping
circles have been added for visual clarity. (B) Re-sampling analysis using
partitioning around medoids (PAM) analysis of approximately 7,000
probes, 49 patients and 5 predefined clusters of tissue samples (k = 5).
Heatmap colors represent the frequency with which a pair of samples
are found in the same cluster, and are represented as a percentage
of the total number of samplings in which the pair was observed.
(C) Assessment of cluster robustness via determination of silhouette
width of approximately 7,000 clustered probes from the 49 patients.
Average silhouette widths for each of the five clusters are indicated.

: Figure S2. Assessment of overlap between biological
process gene-sets utilized by the Database for Annotation, Visualization
and Integrated Discovery (DAVID) pathway analysis tool for unregulated
genes in each of the four synovial clusters defined in Figure 1A. The
overlap of genes shared by gene sets are illustrated using a heatmap
where each value represents the proportion of genes from the category
on the y-axis that are in common with the corresponding gene set on
the x axis (indicated by the color bar; 0 = 0%, 1 = 100%). The matrix is not
symmetrical because the size of the gene sets is not constant.

: Figure S3. (A) Heatmap visualization of processes
enriched in downregulated genes in each of the four synovial clusters
defined in Figure 1A using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) pathway analysis tool. Colors refer to
statistical significance of processes to each cluster. (B) Assessment of
overlap between biological process gene sets utilized by the DAVID
pathway analysis tool for downregulated genes in each of the four
synovial clusters defined in Figure 1A. The overlap of genes shared by
gene sets are illustrated using a heatmap where each value represents
the proportion of genes from the category on the y-axis that are in
common with the corresponding gene set on the x-axis (indicated by
the color bar; 0 = 0%, 1 = 100%). The matrix is not symmetrical because
the size of the gene sets is not constant.

: Figure S4. B cell, M1 classically activated monocyte,
and fibroid gene modules capture synovial tissue transcriptional
heterogeneity in additional rheumatoid arthritis (RA) patient cohorts.
(A) Scatter plot of the training cohort of 49 patient synovial samples
projected in gene set space of the B cell (x-axis) and M1 monocyte
(y-axis) biological modules. Samples are colored according to their
cluster assignments in Figure 1 (red = lymphoid, purple =myeloid,
green = fibroid, grey = low inflammatory). Filled circles indicate samples
with histologic aggregates and empty circles indicate samples lacking
aggregates. Scatter plot of the same 49 RA patients projected in gene set
space of the B cell (x-axis) and M1 monocyte (y-axis) biological modules,
and samples are also colored according to their respective fibroid gene
set scores as indicated by the color bar. (C) Scatter plot of 33 previously
unanalyzed patient samples from a parallel Michigan RA cohort projected
in gene-set space of the B cell (x-axis) and M1 monocyte (y-axis)
biological modules. Samples are colored according to their respective
fibroid gene-set scores as indicated by the color bar. (D) Scatter plot of a
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publicly available cohort of 62 RA histologically characterized patients
(GSE21537) projected in gene-set space of the B cell (x-axis) and M1
monocyte (y-axis) biological modules. Samples are colored according to
their respective fibroid gene-set scores as indicated by the color bar.

: Figure S5. CD20 Immunohistochemistry (IHC)
correlates with B cell gene-set score in a replication rheumatoid arthritis
(RA) patient cohort. Representative CD20 IHC (brown staining) is shown
for synovial samples with a high or low B cell gene-set score with low
(A, B respectively) and high (C, D respectively) magnification. B cell
gene-set scores were also plotted against CD20 IHC scores and the
P-value for Spearman rank correlation coefficient is indicated (E).

: Figure S6. Association of pretreatment synovial
gene-set scores with good versus poor European League Against
Rheumatism (EULAR) response to anti-TNFα (infliximab) therapy at 16
weeks in the GSE21537 synovial expression dataset. Statistical significance
for good compared with poor response for the level of each gene-set
module was calculated based upon the t-statistic. Scaled gene-set scores
for M2 alternatively activated monocytes (A) (P = 0.054), TNFα-stimulated
fibroblast-like synoviocytes (B) (P = 0.08), and angiogenesis (C) (P = 0.02)
marked with asterisk) are plotted against 16-week EULAR response.

: Figure S7. Receiver-operating-characteristic (ROC)
curves to assess the ability of pretreatment synovial phenotypes, defined
by scaled gene-set scores, to differentiate between good versus poor
European League Against Rheumatism (EULAR) response to anti-TNFα
(infliximab) therapy at 16 weeks in the GSE21537 synovial expression
dataset. ROC curves were generated for the myeloid (A), lymphoid
(B) and fibroid (C) phenotypes, and also for gene sets reflective of M1
classically-activated monocytes (D), B cells (E) and T cells (F). Area under
the ROC curve (AUC) is indicated for each plot.

: Figure S8. Biomarker subpopulation treatment
effect pattern plot (STEPP) analysis of the ADalimumab ACTemrA
(ADACTA) trial. Assessment of individual biomarkers compared with
treatment effect. One-dimensional STEPP analysis of week-24 American
College of Rheumatology (ACR) 50 relative treatment effectiveness of
adalimumab compared with tocilizumab for the serum markers soluble
intercellular adhesion molecule 1 (sICAM1) (A) and C-X-C motif
chemokine 13 (CXCL13) (B) respectively in the ADACTA trial. Week-24
ACR50 odds ratios are shown in solid blue and 95% CIs as accompanying
dashed lines. The x-axes correspond to the subgroup of subjects whose
baseline biomarker levels were within 20 percentiles below and above
the indicated subpopulation median with actual values (pg/ml) in
parentheses. The dotted horizontal line indicates equivalent relative
treatment effect. (C) Two-dimensional STEPP analysis for sICAM1 and
CXCL13. Each cell of the heatmap corresponds to a subgroup of subjects
whose baseline biomarker levels were within 25 percentiles below and
above the indicated subpopulation median as defined by each
biomarker. Concentrations of each biomarker at the indicated percentage
are in parentheses in plot margins. Heatmap colors indicate odds ratio
(95% CI in brackets) from logistic regression corresponding to outcomes
for adalimumab versus tocilizumab. Counts of subjects in each treatment
arm for each subgroup are indicated as n = (tocilizumab)/(adalimumab).

: Figure S9. Receiver-operating-characteristic (ROC)
curves to assess the ability of pretreatment C-X-C motif chemokine 13
(CXCL13) and soluble intercellular adhesion molecule 1 (sICAM1) to
differentiate for clinical response in the ADalimumab ACTemrA (ADACTA)
trial biomarker population. ROC curves were generated for sICAM1 versus
achievement of an American College of Rheumatology (ACR)50 response
at week 24 for adalimumab in all-comers (A), CXCL13-high (B), and
CXCL13-low patient subsets (C), and for CXCL13 versus achievement of
an ACR50 response at week 24 for tocilizumab in all-comers (D),
sICAM1-high (E) and sICAM1-low patient subsets (F). Biomarker high and
low designations were made using their respective medians as the cutoff.
Area under the ROC curve (AUC) is indicated for each plot.
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Abbreviations
ACR: American College of Rheumatology; ADACTA: ADalimumab ACTemrA;
Agg: aggregated; AUC: area under the receiver-operating characteristic curve;
BMP: bone morphogenetic protein; CXCL13: C-X-C motif chemokine 13;
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DAB: 3,3′-diaminobenzidine; DAS28: disease activity score (from 28 joints);
DAVID: Database for Annotation Visualization and Integrated Discovery;
DMARD: disease-modifying anti-rheumatic drug; ESR: erythrocyte
sedimentation rate; EULAR: European League Against Rheumatism;
FACS: fluorescence-activated cell sorting; FDR: false discovery rate;
HCL: hierarchical clustering; IFN: interferon; IL: interleukin; JAK: Janus kinase;
LLOQ: lower limit of quantification; LN: lymphoid neogenesis;
LPS: lipopolysaccharide; MSigDB: Molecular Signatures DataBase;
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NS: not
significant; NSAID: non-steroidal anti-inflammatory drug; PAM: partitioning
around medoids; RA: rheumatoid arthritis; RF: rheumatoid factor; RMA: robust
multichip average; ROC: receiver-operating characteristic; sICAM1: soluble
intercellular adhesion molecule 1; STAT: signal transducer and activator of
transcription; STEPP: subpopulation treatment effect pattern plot; TNF: tumor
necrosis factor.
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