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Targeted exon sequencing fails to identify rare
coding variants with large effect in rheumatoid
arthritis
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Abstract

Introduction: Although it has been suggested that rare coding variants could explain the substantial missing
heritability, very few sequencing studies have been performed in rheumatoid arthritis (RA). We aimed to identify
novel functional variants with rare to low frequency using targeted exon sequencing of RA in Korea.

Methods: We analyzed targeted exon sequencing data of 398 genes selected from a multifaceted approach in Korean
RA patients (n = 1,217) and controls (n = 717). We conducted a single-marker association test and a gene-based
analysis of rare variants. For meta-analysis or enrichment tests, we also used ethnically matched independent samples
of Korean genome-wide association studies (GWAS) (n = 4,799) or immunochip data (n = 4,722).

Results: After stringent quality control, we analyzed 10,588 variants of 398 genes from 1,934 Korean RA case controls.
We identified 13 nonsynonymous variants with nominal association in single-variant association tests. In a
meta-analysis, we did not find any novel variant with genome-wide significance for RA risk. Using a gene-based
approach, we identified 17 genes with nominal burden signals. Among them, VSTM1 showed the greatest association
with RA (P = 7.80 × 10−4). In the enrichment test using Korean GWAS, although the significant signal appeared to be
driven by total genic variants, we found no evidence for enriched association of coding variants only with RA.

Conclusions: We were unable to identify rare coding variants with large effect to explain the missing heritability for RA
in the current targeted resequencing study. Our study raises skepticism about exon sequencing of targeted genes for
complex diseases like RA.
Introduction
Rheumatoid arthritis (RA (MIM 180300)) is a complex
autoimmune disorder that results from both genetic and
environmental risk factors [1,2]. Strong evidence regard-
ing the existence of a genetic predisposition for RA has
been supported by several familial studies including twin
studies, in which the heritability of RA has been esti-
mated to be approximately 65% [1,2].
Nearly 60 RA risk loci were identified in several large

studies including genome-wide association studies (GWAS)
[3-6] and immunochip (iCHIP) [7,8] arrays using common
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single nucleotide variants (SNVs). The largest genetic
contribution effect size has been identified for the major
histocompatibility complex (MHC) locus with evidence
for three independent association signals on HLA-B,
HLA-DRB1, and HLA-DPB1 affecting five amino acid
positions [9,10]. The total variance of the MHC region
explained 13.03% of the RA risk [11]. The other non-
MHC genes identified were primarily immune pathway
genes, though their effect sizes were quite modest. To
date, the known RA risk loci can explain only about
25% of the total genetic heritability [12].
It has been suggested that rare or low-frequency vari-

ants could explain the substantial unexplained heritability
of many complex diseases, most of which were not fully
captured using the previous conventional genotyping
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technology. Recently, Stahl et al. [11] inferred a highly
polygenic model that attempted to explain the missing
heritability of RA. In this model, it was suggested that a
small number of rare variants with large effect sizes may
contribute to heritability in addition to hundreds of com-
mon variants.
New genomic technologies, including next-generation

sequencing (NGS), can provide a new approach for identi-
fication of rare variants. With advances in NGS technol-
ogy, the role of rare or low-frequency variants in many
complex diseases like RA can be investigated to better
characterize the genetic architecture of the disease. Re-
cently, several sequencing studies that have investigated
common autoimmune diseases have shown that rare vari-
ants within genes containing common variants are associ-
ated with complex diseases [13-16]. For RA, Diogo et al.
[17] performed deep exon sequencing of 25 biological
candidate genes discovered by GWASs in 500 RA cases
and 650 controls of European ancestry and subsequent
dense genotyping in larger samples, in which they found
accumulation of a few rare nonsynonymous variants with
nominal significance instead of variants with large effect
of genome-wide significance.
Here, we aimed to identify novel functional variants

with rare to low frequency using targeted exon sequencing
in Korean RA, which dealt with hundreds of selected
genes that were related to RA in various aspects such as
previous identified genes from GWASs and immunochip
data, literature reviews, and related pathways.

Materials and methods
Patients and controls
A total of 1,252 RA cases were enrolled from the BAE
cohort of Hanyang University Hospital for Rheumatic
Diseases and satisfied the American College of Rheuma-
tology 1987 classification criteria [18] for RA. The ethnic-
ally matched 745 healthy controls, excluding those with a
personal or familial history of any autoimmune disease,
were recruited at the same institute. Informed consent
was obtained from all individuals via a questionnaire at
the time of enrollment, when clinical information was also
collected. The study was approved by the institutional re-
view board of Hanyang University (HYG-11-015-1).

Targeted gene selection
We selected candidate genes using a comprehensive ap-
proach that included previous genetic and biological
research, pathway databases, text-mining analysis, and
animal-model databases (Figure S1 in Additional file 1).
Of the non-MHC candidate genes, we included (a) 106
known RA risk loci identified via literature review
[3,4,6,9,19], (b) 519 genes associated with RA in our
Korean iChip dataset [8], (c) 155 genes shared by both
RA and systemic lupus erythematosus (SLE) in our
previous Korean GWAS datasets [4,20], (d) 18 genes in
RA-related pathways, (e) 65 genes identified via text
mining using GRAIL from recent GWAS data [3,4], and
(f ) 8 human homologs of mouse genes that induced an
RA-like phenotype from the Mouse Genome Database
(MGD) [21]. Altogether, 666 designable target genes were
selected for exon sequencing.

Exon sequencing
We enriched the target exons with Agilent’s SureSelect
capture kit (target region = 1.36 Mb) and performed high-
throughput paired-end sequencing using a HiSeq2000
(Agilent Technologies, Santa Clara, CA, USA). The se-
quencing reads were mapped to the human reference gen-
ome, where the reference sequence was UCSC assembly
hg19 (NCBI build 37.1) using Burrows-Wheeler Aligner
(BWA) software [22]. We then applied programs packaged
in Picard-tools in order to convert the previous SAM file
into a format that was sorted by mapping coordinates and
to remove PCR duplicates. We created another SAM file
that included only reads that uniquely mapped to the
reference genome, and transformed this into a BAM file
using Samtools [23]. Those variants are annotated by
ANNOVAR (Figure S2 in Additional file 1).
We then performed stringent quality control for 666

target gene by which we selected only high coverage genes
that were sequenced coding-region based on the public
database (db). We obtained an initial dataset with 50,247
variants from 666 targeted genes. We filtered the original
genotype matrix by single nucleotide polymorphism (SNP)
quality and depth coverage. The filtered genotype data
contains genotype calls satisfying with practical guidance
in rare variants analysis of complex trait association stud-
ies [24]; coding sites sequenced with >20× coverage and
quality score >30 in at least 80% of cases and controls in
the public database (db) or in the designed targeting
genes. As a result, a total of 398 genes (mean 92.0% cover-
age of the captured exon) in 1,997 individuals were used
in the subsequent variant-calling analysis (Table S1 in
Additional file 1). When we called the variants if SNVs
had minimal depth coverage >20× and a quality score >30
in more than 80% of the subjects sequenced, a total of
12,916 variants within 398 genes were identified. We
then eliminated SNVs that had insufficient call rates
(<90%) in cases and controls, Hardy-Weinberg disequi-
librium with P <0.01 in controls, and also eliminated
samples that had insufficient call rates (<90%). We
finally analyzed the 10,588 exonic variants of 1,934
samples for further single-variant association test, gene-
based test, and pathway-based association enrichment
test (Table 1, Table S2 in Additional file 1). There was no
evidence of skewed genotyping between cases and con-
trols in the principle component (PC) analysis (Figure S3
in Additional file 1).



Table 1 Characteristics of RA patients and controls
included in targeted exon sequencing

RA cases
(n = 1,217)*

Controls
(n = 717)*

Age of onset (mean ± SD years) 41.9 ± 12.8 35.1 ± 10.7

Disease duration (mean ± SD years) 9.9 ± 11.1 -

Female (%) 87.4 85.3

Rheumatoid factor (%) 97.8 -

Anti-cyclic citrullinated peptide
autoantibodies (%)

98.1 -

*Cryptic relatedness with duplicate or first-degree relatives using KING
software, outlier (deviating >8 SEM on any of the five principal components),
or samples with less than 80% of the data sequenced were removed. A total
of 1,934 samples were included for further analysis. SD, standard deviation;
SEM, standard error of the mean.
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Statistical analysis
To analyze for single-marker association with RA in tar-
geted exon sequencing data, odds ratios (OR) and P values
were calculated using PLINK v1.07 software [25] with ad-
justments for the top 10 PCs in logistic regression. Fisher’s
exact tests were also used for association tests of each
rare variant.
For a meta-analysis (3,580 RA cases and 7,938 con-

trols) using a Korean RA GWAS [4] and iCHIP [8] data
generated from ethnically matched independent sample
collections in addition to the current NGS results, we ap-
plied several quality-control filters on Korean RA GWAS
(n = 4,799) and iCHIP (n = 4,722) data to select high-
quality SNVs (minor allele frequency (MAF) ≥1%, P value
of Hardy-Weinberg equilibrium (HWE) <10−4 and call
rate >95% in cases and controls).
For an enrichment test for exonic SNPs in 77 newly

identified genes (P <0.05 in a single-variant test of se-
quencing data), we imputed common and low-frequency
variants (MAF >0.5%) from the Korean GWAS data (800
RA cases and 3,999 controls) by ShapeIt and IMPUTE2
with the 1000 Genomes Phase I reference panel. We per-
formed logistic regressions for 1,000-times permuted phe-
notypes with the top 10 PCs as covariates by PLINK.
Then, the numbers of genic, exonic, nonsynonymous, or
synonymous variants reaching the Pthreshold <0.05 between
observed and permuted data were compared by using a
Fisher’s exact test.
In a gene-based analysis of rare coding variants

(MAF <5%), we performed both nonburden testing (op-
timal sequence kernel association test (SKAT-O)) [26]
and burden testing (SCORE-seq) [27,28]. Weighted ana-
lysis was performed for rare nonsynonymous variants
using SIFT [29], PolyPhen2 [30], and CAROL [31] scores.
Statistical significance was determined by using 1,000,000
case-control permutations.
In pathway-based enrichment test of NGS data, we gen-

erated 1,000 permuted phenotype sets and their disease
association P values for each SNV by logistic regression
with adjustment for the top 10 PCs. To eliminate linkage
disequilibrium (LD)-derived enrichment bias, we clumped
the set of SNVs (r2 <0.4) in order of statistical significance.
Then, we compared the number of SNV with P <Pthreshold
between permuted datasets and empirical datasets by
Fisher’s exact tests. Genes in each functional pathway were
obtained from Ontology and KEGG.

Ethics approval
Ethics approval was granted by the institutional ethics com-
mittee of Hanyang University in the Republic of Korea.
Patient and control consents were obtained.

Results
After stringent quality control on the 666 targeted genes
(Figure S1 in Additional file 1) as well as the sequenced
samples (see Materials and Methods), we obtained a final
dataset for analysis that consisted of 10,588 exonic vari-
ants from 398 genes in 1,217 RA cases (age = 41.9 ± 12.8
(mean age ± standard deviation (SD)); female = 87.4%)
and 717 controls (age = 35.1 ± 10.7 (mean age ± SD);
female = 85.3%) (Table 1).
The majority of SNVs were rare (90.6% with MAF <5%),

and 6,605 SNVs were novel which were not identified in
the 1000 Genome Project dataset (Figure S4 in Additional
file 1). The transition/transversion (Ti/Tv) rate was 2.93 in
RA cases and 2.92 in controls, which indicates good quality
control based on expected human mutation types (Table
S2 in Additional file 1). We note that a high concordance
rate was observed between genotype calls from sequencing
versus other genotyping methods such as GWAS and
iCHIP by non-reference sensitivity [32] and non-reference
discrepancy rate [33] (Table S3 in Additional file 1). In
addition, validation using a TaqMan assay for a selected
37 SNVs showed high concordance rates with sequen-
cing data (99.3%).
We used three different strategies for analysis of variants

that passed the stringent quality control: (1) single-variant
association test, (2) gene-based test for rare variants of
which MAF are less than 0.05, and (3) pathway-based
association enrichment test (Figure 1). Regarding the
single-variant association test, we further perform a
meta-analysis using the current NGS data and previous
GWAS/iCHIP data from independent Koreans, and evalu-
ate that exonic SNPs in the genes associated with RA in
the NGS data are enriched for RA association in imputed
GWAS dataset.
In the first single-variant association analysis using

10,588 SNVs in 1,217 cases and 717 controls, we identi-
fied thirteen nonsynonymous variants with P <0.01,
none of which reached the significance threshold after
Bonferroni correction (Table S4 in Additional file 1). To
compensate for the limited power that may have resulted
in a lack of significant associations, we performed a



Figure 1 Description of the study design. We analyzed data from protein-coding variants within targeted genes using three different strategies
for analysis.
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meta-analysis for 108 coding SNVs (located in 89 genes)
that were associated with a P value less than 0.05 in the
single-variant association test. We used two independent
Korean genomic data in the meta-analysis with NGS data;
one was Korean RA GWAS dataset [4] (n = 1,099) com-
bined with independent Korean control data (n = 3,700)
genotyped by Illumina HumanOmni1-Quad BeadChip,
and the other was Korean iCHIP data from 4,722 inde-
pendent case-control subjects [8].
We focused on novel genes in the meta-analysis data-

set of 3,580 RA cases and 7,938 controls, excluding any
known GWAS or iCHIP signals. However, neither
common nor low-frequency novel variants achieved
genome-wide significance (P <1.0 × 10−8), with an SNV
(rs1088680) within PRKCH showing the strongest asso-
ciation (P = 3.16 × 10−5) (Table S5 in Additional file 1).
Next, in an attempt to investigate whether an aggre-

gate effect of 89 risk genes identified in NGS (P <0.05)
exists or not, we performed an enrichment analysis for
RA associations in all risk genes excluding 12 known RA
risk loci using an independent dataset from our GWAS.
Association of 41,454 SNVs within the 77 genes in the
imputed Korean GWAS data was compared with the re-
sults after 1,000 case-control permutations by Fisher’s
exact tests (Figure 2). To eliminate LD-derived bias, we
clumped the set of independent SNVs (r2 <0.4).
Although the significant signal appeared to be driven

by 4,376 genic variants (observed NP<Pthreshold/Ntotal =
386/4376; Penrichment (genic) = 1.04 × 10−32), we found no
evidence for enriched association at coding variants only
(exon (observed NP<Pthreshold/Ntotal = 17/292; Penrichment =
0.41 at Pthreshold = 0.05), nonsynonymous (11/152;
Penrichment = 0.18), and synonymous (9/177; Penrichment =
0.99)) (Figure 2).
In the second analysis, we performed gene-based ana-

lysis of rare coding variant (MAF <5%) using nonburden
tests (optimal sequence kernel association test (SKAT-
O)) [26], burden tests (SCORE-seq) [28], and weighted
tests with SIFT [29], PolyPhen2 [30], and CAROL [31]
scores for the functional effects of the variants. A total
of 17 genes had a nominal burden signal of association
(P <0.05), most of which had two or more nonsynonymous
rare variants, although they did not reach the threshold for
significance after Bonferroni correction (P <1.2 × 10−4)
(Table 2, Figure S5 in Additional file 1). For VSTM1, a top
gene driven by the gene-based test, we further validated
eight rare variants in VSTM1 using Sanger sequencing
with the same samples that were heterozygous for any of
those variants in the initial sequencing stage; 29 of 31 sam-
ples were validated as heterozygous (false-positive rate =
6.45% (2/31)). The following analysis using only these vali-
dated samples showed that a set of the validated seven
nonsynonymous variants of VSTM1 conferred a protective
role in RA (P = 4.55 × 10−3 in SKAT-O, P = 7.80 × 10−4 in
SCORE-seq). The four variants of VSTM1 were primarily
within the immunoglobulin-like domain among the coding
regions. The two variants, A33T at the domain and D122N
closed to the domain, were thought to be deleterious



Figure 2 Enrichment analysis of 77 novel genes with nominal signal on exon sequencing in the GWAS dataset. (A) We performed
logistic regressions including 10 principal components using 1,000-times permuted phenotypes. The numbers of (B) genic, (C) exonic, (D)
nonsynonymous (NonSyn), and (E) synonymous (Syn) variants reaching the P <0.05 threshold following 1,000 permutations are shown. Significant
enrichment of SNVs using the P <0.05 threshold was assessed using Fisher’s exact tests (**P <0.01). These enrichment signals were driven by each
group (Penrichment (genic) = 1.04 × 10−32, Penrichment (exon) = 0.41, Penrichment (NonSyn) = 0.18, and Penrichment (Syn) = 0.98 at Pthreshold = 0.05).
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variants by PolyPhen2, suggesting that these may have a
functionally protective role in RA (Figure 3).
In the third analysis, we conducted a pathway enrich-

ment analysis of coding variants (nonsynonymous and
synonymous) within 335 novel genes using Ontology and
KEGG, which were obtained after excluding the known
RA risk loci (+/-250 kb) from the initial 398 genes in NGS.
In this analysis of both common and rare variants, we ob-
served weak but significant evidence of overall enrichment
of coding SNVs (Penrichment (nonsynonymous) = 8.55 × 10-4 and
Penrichment (synonymous) = 0.166 at Pthreshold = 0.05) (data not
shown) for the 335 genes. However, in the analysis for each
pathway, we did not identify any pathway in which a sig-
nificant enrichment for coding variants for RA existed at
Pthreshold = 0.05.
Discussion
This study does not support our hypothesis that the sub-
stantial proportion of missing heritability for RA can be
inferred from rare coding variants. Among the 10,588
candidate variants of 398 genes analyzed in a cohort of
1,217 RA cases and 717 controls, 13 single nonsynon-
ymous variants showed only nominal significance with a
P value less than 0.01. Several genes found in the gene-
based analysis also showed only weak association with RA.
Strikingly, this lack of a significant effect is consistent

with that observed by Diogo et al. [17] in Caucasian
population, in which most of the 25 candidate genes
subjected to deep exon sequencing did not harbor rare
coding variants contributing to risk of RA despite some
evidence of accumulation of rare missense variants in



Table 2 Gene-based tests of rare nonsynonymous
variants in RA

GENE Chr Gene-based test*

Nmarker SKAT-O
(nonburden test)
P value

SCORE_seq
(burden test)

P value

VSTM1 19 7 4.55 × 10−3 7.80 × 10−4

KPRP 1 8 6.38 × 10−3 6.51× 10−3

C6orf99 6 5 0.05155 0.01669

PARD3 10 21 0.14496 0.01887

PYGL 14 10 0.02287 0.02057

ARHGAP26 5 9 0.01939 0.02114

NCF2 1 8 0.02574 0.02159

CCR6 6 7 0.01131 0.02776

TRAF6 11 8 0.04621 0.02876

GRIN2B 12 6 0.20806 0.02966

SNTB1 8 6 0.00987 0.03395

PTCD3 2 11 0.14462 0.03772

CA8 8 3 0.17982 0.03792

NRXN3 14 8 0.12536 0.03905

CPEB4 5 7 0.05104 0.04010

CTNNA3 10 16 0.10312 0.04079

KRT24 17 5 0.02866 0.04837
*We defined rare nonsynonymous variants as MAF <5% in both cases and
controls. We selected 347 genes with two or more rare nonsynonymous
variants for gene-based tests. RA, rheumatoid arthritis; Chr, chromosome;
Nmarker, number of rare nonsynonymous variants for each gene.

Figure 3 Rare variants of VSTM1 identified by exon sequencing. The s
Sanger sequencing method were primarily singletons driven from controls
variants of VSTM1 lie within the coding regions of the immunoglobulin-like
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gene-based test. Although 16 genes were overlapped be-
tween our Korean study and the Caucasian study [17],
we could not find any significant single coding variant
or gene that was shared in both ethnic groups. Taken to-
gether, rare functional variants may have very weak con-
tribution to development of RA.
Besides, recent large-scale sequencing studies of six

common autoimmune diseases (autoimmune thyroid dis-
ease, Crohn’s disease, celiac disease, psoriasis, multiple
sclerosis, and type 1 diabetes) showed a negligible impact
of rare autoimmune-locus coding variants on unexplained
heritability (<3%) [34].
A possible reason for this negative finding may be the

limited number of targeted genes that were sequenced,
which were 398 genes in the current study. Rare coding
variants of the remaining genes across whole genome
could participate in the missing genetic contribution to
RA. The other potential reason may be genetic hetero-
geneity for RA, in which each individual or small subset
of RA may have their particular rare causal variants. The
current study revealed a lot of examples in which a spe-
cific rare variant was observed in only one or two indi-
viduals among 1,934 subjects. To discover these lots of
‘private’ causal variants that are susceptible only in small
subsets of RA patients, deep sequencing of whole exome
from very large RA cases, approximately thousands of
individuals, would be required.
VSTM1, a top signal gene driven by a gene-based test, is

a glycoprotein primarily expressed in immune tissues,
which can promote the differentiation and activation of
Th17 cells [35]. In addition, two variants of VSTM1 (A33T,
D122N) found in the current study were deleterious
even nonsynonymous variants of VSTM1 that were validated by the
except for A33T (RA (n = 3), control (n = 5)). The four nonsynonymous
domain.
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variants by PolyPhen2. Therefore, it is certainly worth rep-
licating these variants or performing deep sequencing of
the entire VSTM1 gene from an independent larger popu-
lation, especially in Caucasians.
There are several limitations of this study. First, we

performed a targeted exon sequencing study, which
tends to generate more biased data than whole-exome
or whole-genome sequencing studies. Additionally, we
did not attempt to validate all rare variants identified by
alternative methods, but rather performed it only for se-
lected variants such as Sanger sequencing of rare nonsy-
nonymous variants of VSTM1 and TaqMan genotyping
of 37 variants from 200 samples. Finally, we included ap-
proximately 2,000 subjects for sequencing, which might
not be enough of a sample size to discover rare variants.
Consequently, this lack of power may lead most of the
analysis in the study, such as the single-variant associ-
ation analysis, gene-based tests, and enrichment tests, to
be less significant with weak association.
However, to our knowledge, this study represents the

largest sequencing study that evaluated the largest num-
ber of candidate genes with the largest case controls for
RA until now. Despite negative findings, further replica-
tion of the possible single variants or rare variants in the
study will be of some interest.

Conclusions
We were unable to identify rare coding variants with large
effect of 398 targeted genes. Despite much anticipation re-
garding missing heritability, our study raises skepticism
about next-generation sequencing of targeted genes in
order to discover rare variants with large effect for com-
plex traits like RA. With the advance of genetic technol-
ogy such as capturing, sequencing of targeted genes, and
whole-exome or genome sequencing with a lot of subjects
could define more details about the genetic architecture of
RA in future.
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