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Leukotriene B4 activates intracellular calcium and
augments human osteoclastogenesis
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Abstract

Introduction: Bone erosion in inflammatory arthritis depends on the recruitment and activation of bone resorbing
cells, the osteoclasts. Interleukin-23 (IL-23) has been primarily implicated in mediating inflammatory bone loss via the
differentiation of Th17 receptor activator of nuclear factor kB ligand (RANKL) producing cells. In this article, we describe
a new role of IL-23 in activating the synthesis and production of leukotriene B4 (LTB4) in innate immune cells.

Methods: We utilized whole blood derived human peripheral blood mononuclear cells (PBMCs), differentiated them
towards an osteoclast lineage and then performed immunofluorescence and cytochemical staining to detect the
expression of L TB4-associated receptors and enzymes such as phospholipase A2, 5-lipoxygenase and leukotriene A4
hydrolase, as well as the presence of tartrate-resistant acid phosphatase (TRAP) and F-actin rings on fully mature
osteoclasts. We used enzyme immunoassays to measure LTB4 levels in culture media derived from IL-23-treated human
PBMCs. We used real-time calcium imaging to study the effect of leukotrienes and requirements of different calcium
sources and signaling proteins in activating intracellular calcium flux using pharmacological inhibitors to phospholipase
C (U73122), membrane calcium channels (2-APB) and phosphatidylinositol 3-kinase (Wortmannin) and utilized qPCR for
gene expression analysis in macrophages and osteoclasts.

Results: Our data show that LTB4 engagement of BLT1 and BLT2 receptors on osteoclast precursors leads to activation
of phospholipase C and calcium release activated channel mediated intracellular calcium flux, which can activate
further LTB4 autocrine production. IL-23-induced synthesis and secretion of LTB4 resulted in the upregulation of
osteoclast-related genes NFATCT, MMP9, ACP5, CTSK and /TGB3 and the formation of giant, multinucleated TRAP™ cells
capable of F-actin ring formation. These effects were dependent on Ca®* signaling and were completely inhibited by
BLT1/BLT2 and/or PLC and CRAC inhibitors.

Conclusions: In conclusion, IL-23 can initiate osteoclast differentiation independently from the RANK-RANKL pathway

by utilizing Ca®" signaling and the LTB4 signaling cascade.

Introduction

In inflammatory arthritis, pathological bone erosion oc-
curs because of increased differentiation and activation
of osteoclasts, the only specialized bone-resorbing cells.
Under physiological conditions, osteoclasts are derived
from c-fms’/RANK" monocyte/macrophage precursor
cells and develop into fully functional osteoclasts upon
receptor engagement by their ligands macrophage colony-
stimulating factor (M-CSF) and receptor activator of nuclear
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factor kB ligand (RANKL) [1]. Once terminally differenti-
ated, these osteoclasts adhere to the bone surface via a,f3
integrins, reorganize their cytoskeleton to form actin-rich
sealing zones and secrete enzymes such as tartrate-resistant
acid phosphatase (TRAP), cathepsin K and matrix metal-
loproteinase 9 (MMP9), which facilitate bone resorption
[2]. Whereas RANKL signaling determines osteoclasto-
genesis under physiological conditions, several proinflam-
matory cytokines, including interleukin 23 (IL-23), IL-17
and tumor necrosis factor (TNF) can also activate osteo-
clastogenesis and exacerbate inflammation in the joint
tissue [3-5]. Hence, it is crucial to study these alternate
pathways and their role in mediating inflammatory arthritis.

IL-23 has been implicated primarily in mediating
inflammatory bone loss via the differentiation of Th17
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cells and the production of pro-osteoclastogenic cyto-
kines IL-17, RANKL and TNF [6]. We recently demon-
strated that IL-23 gene transfer in mice rapidly induced
synovial inflammation and osteoclastogenesis in the
absence of T cells [5]. G protein coupled receptors
(GPCRs) possess the ability to transmit intracellular sig-
nals within milliseconds of activation, whereas growth
factor and cytokine receptors lack this rapidity and
specificity in signaling [7,8]. Thus, this rapid induction
of inflammation observed during IL-23 gene transfer
prompted us to investigate, alternate inflammatory path-
ways associated with GPCRs. One pathway that has been
associated with rapid inflammation and osteoclast for-
mation is the leukotriene activation pathway [9].

Leukotrienes are active lipid mediators of inflammation
generated primarily from myeloid leukocytes such as neu-
trophils, monocytes, macrophages and mast cells from
the metabolism of arachidonic acid via the 5-lipoxygenase
(5-LO) pathway [10]. This arachidonic acid is first gener-
ated from phospholipids via the activity of the calcium-
dependent cytosolic phospholipase A, (PLA,) [11], which
provides the initial step in the leukotriene biosynthesis
cascade. Leukotrienes consist of leukotriene B4 (LTB4)
and the cysteinyl leukotrienes: namely, leukotriene C4
(LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4).
These are all produced from leukotriene A4 (LTA4) by the
differential activity of either LTA4 hydrolase (LTA4H) or
LTC4 synthase (LTC4S) [12]. BLT1 and BLT?2 are high- and
low-affinity GPCRs, respectively, for LTB4 [13,14], and
studies using BLT1-deficient mice have demonstrated a re-
sistance to inflammatory arthritis and significantly reduced
bone destruction [9,15]. A similar phenotype is observed in
mouse strains deficient in LTB4 biosynthesis enzymes such
as 5-LO and LTA4H, which collectively highlight the sig-
nificance of LTB4 in inflammatory arthritis and osteoclasto-
genesis [16,17]. In keeping with these observations, LTB4
levels have also found to be elevated in the synovial fluid
and tissue of patients with rheumatoid arthritis and are as-
sociated with several other inflammatory disorders, includ-
ing psoriasis and bronchial asthma [18,19].

In this study, we investigated the dynamics between
IL-23 and LTB4, two inflammatory mediators that may or-
chestrate osteoclast differentiation and activation in inflam-
matory arthritis. We previously demonstrated that systemic
IL-23 expands the CD11b*Gr1™&" myeloid subpopulation,
which comprises the primary cell type involved in the bio-
synthesis of LTB4 [5,17]. In this study, for greater clinical
significance, we demonstrate that treatment of human per-
ipheral blood mononuclear cells (PBMCs) with IL-23 acti-
vates the release of LTB4. This LTB4 can engage with its
receptors BLT1 and BLT?2, which are receptors on macro-
phages leading to activation of phospholipase C (PLC) and
calcium release activated channel (CRAC) mediated intra-
cellular calcium flux. LTB4 can also activate nuclear
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factor of activated T-cells, cytoplasmic 1 (NFATC1),
and transcription of downstream osteoclast-related
genes such as TRAP, cathepsin K and B3 integrin, as well
as the formation of giant multinucleated TRAP" cells
with F-actin ring structures independent of RANKL. IL-23
can initiate osteoclast differentiation independently from
the RANK-RANKL pathway, and it may utilize the LTB4
signaling cascade to drive the precursor cells toward
osteoclast development. Blockade of the LTB4 pathway is
therefore a potential therapeutic target for inflammatory
arthritic diseases.

Methods

Antibodies and reagents

Human PBMCs were isolated from whole-blood filters
from healthy donors obtained from Delta Blood Bank
(Stockton, CA, USA). All protocols were approved by the
University of California at Davis Institutional Review Board,
and written informed consent was obtained as required. All
cell incubations were performed in culture medium consist-
ing of a minimal essential medium (Invitrogen, Carlsbad,
CA, USA), 2 mM glutamine, 10% heat-inactivated fetal bo-
vine serum (Invitrogen), 100 IU/ml penicillin and 100 pg/ml
streptomycin. Human M-CSE, RANKL, IL-23 were pur-
chased from R&D Systems (Minneapolis, MN, USA).
Antibodies to 5-LO, LTA4H (EPR5713), BLT1 (202/7B1)
and BLT2 were obtained from Abcam (Cambridge, UK),
AbD Serotec (Raleigh, NC, USA) and Sigma-Aldrich
(St Louis, MO, USA), respectively. Alexa Fluor 555 goat
anti-rabbit secondary antibody was purchased from Life
Technologies (Carlsbad, CA, USA) and fluorescein goat anti-
mouse secondary antibody was purchased from Invitrogen.
Fluo-4 AM (calcium dye) was purchased from Invitrogen.
PLC inhibitor U73122 was purchased from Cayman Chem-
ical (Ann Arbor, MI, USA). 2-Aminoethoxydiphenyl borate
(2-APB) was purchased from Sigma-Aldrich. Phospho-PLA,
antibody (S505) was purchased from Abcam. LTB4,
BLT1 and BLT?2 antagonists (U-75302 and LY255283) and
Wortmannin were purchased from Cayman Chemical.
LTB4 was detected using an LTB4 enzyme-linked im-
munoassay (EIA) kit (Cayman Chemical) according to the
manufacturer s instruction.

Osteoclast differentiation from human peripheral blood
mononuclear cells

Human PBMCs were isolated by gradient density centrifu-
gation using Histopaque-1077 cell separation medium
(Sigma-Aldrich) as previously described [20]. Briefly, 1
10° human cells were plated on 96-well plates on glass cov-
erslips cultured for 24 hours in the presence of M-CSF
(25 ng/ml), and then adhered cells were transferred to 24-
well plates where they were cultured with either M-CSF
(25 ng/ml), M-CSF (25 ng/ml) + RANKL (30 ng/ml) or
M-CSF (25 ng/ml) + LTB4 (10 nM) for up to 14 days.
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Multinucleated (three or more nuclei), TRAP" cells capable
of F-actin ring formation, were characterized as osteoclasts.
The cells cultured on plastic dishes were stained for TRAP
using a commercially available kit (Sigma-Aldrich) according
to the manufacturers instructions. F-actin ring formation
was visualized using phalloidin-fluorescein isothiocyanate
(FITC) staining (Sigma-Aldrich). Culture medium was col-
lected and frozen at —80C until EIA analysis.

Immunofluorescence staining

Human PBMCs were isolated and cultured for 8 or
14 days with human M-CSF (25 ng/ml) or M-CSF
(25 ng/ml) + RANKL (30 ng/ml). At the time of harvest,
cells were fixed with 4% paraformaldehyde (PFA) at
room temperature (RT) for 30 minutes, permeabilized
with 0.5% Triton X-100 for 5 minutes, washed with
phosphate-buffered saline (PBS) and then blocked with
50% goat serum for 20 minutes. Cells were then incu-
bated with primary antibodies against LTB4 biosynthetic
pathway proteins, including 5-LO, LTA4H, LTB4 recep-
tors BLT1 and BLT2, and p-PLA, at 4C overnight,
followed by incubation with fluorescent secondary anti-
body at RT for 1 hour, and then the cells were washed
three times with PBS and mounted with mounting
medium containing 4',6-diamidino-2-phenylindole. For
LTB4 receptor and phosphatidylinositol 3-kinase (PI3K)
inhibition experiments, cells were pretreated with either
ethanol control, both BLT1 U-75302 (100 nM) [21] and
BLT2 antagonists LY255283 (100 nM) [22], or Wort-
mannin (1 uM) [23] for 15 minutes at 37C before acute
activation with media, 10 nM LTB4 or 100 ng/ml IL-23
and PFA fixation. Appropriate isotype control antibodies
were used as required.

Real-time calcium measurements

Human PBMCs were cultured with human M-CSF
(25 ng/ml) for 8 days. On the eighth day, cells were
replenished with PBS + 1.5 mM calcium just prior to the
experiments. Cells were labeled with 3 pM fluo-4 AM,
and 100 pl of media, 10 nM LTB4 or 100 ng/ml IL-23 was
added acutely during calcium imaging. For LTB4 receptor,
PLC, CRAC and PI3K inhibition experiments, cells were
treated with either ethanol control, both BLT1 U-75302
(100 nM) and BLT?2 antagonists LY255283 (100 nM), PLC
inhibitor U73122 (1 pM) [24], 2-APB (100 puM) [25] or
Wortmannin (1 pM) for 15 minutes at 37C before cal-
cium measurements. Fluo-4 AM intensity was measured
and tracked over time using NIS-Elements BR software
(Nikon Instruments, Melville, NY, USA).

Real-time PCR

Human PBMCs were treated with M-CSF (25 ng/ml) or
M-CSF (25 ng/ml) + LTB4 (10 nM) for 8 or 14 days, re-
spectively. mRNA was isolated using an RNeasy Mini Kit
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(QIAGEN, Carpinteria, CA, USA), and cDNA was synthe-
sized using the Omniscript Reverse Transcription Kit
(QIAGEN). Message expression levels of NFATCI,
MMPY9, ACP5 (TRAP), CTSK (cathepsin K) and ITGB3 (53
integrin) were assessed using a SYBR Green based quanti-
tative real-time PCR system. Gene expression was calcu-
lated using the comparative cycle threshold (2744
method (using the mean cycle threshold (Ct) value for 18S
rRNA and the gene of interest for each sample). The equa-
tion 1.8¢ (Ct 18S rRNA — Ct gene of interest) 10 * was
used to obtain the normalized values.

Statistical analysis

Data were analyzed by Students t-test. The significance
values were set as follows: *P <0.05, **P < 0.01 and ***P <
0.001. All data are representative of at least three experi-
ments, unless otherwise indicated.

Results

LTB4 biosynthetic enzymes and receptors are expressed
in both macrophages and osteoclasts in vitro

IL-23 has been implicated primarily as a mediator of in-
flammatory bone loss via the activation of IL-17 production
[26]. However, IL-23 may also activate innate immune cells
to produce inflammatory mediators, such as leukotrienes,
to amplify these inflammatory signals. We first demon-
strated that exogenous addition of IL-23 in in vitro human
PBMCs cultured in the presence of M-CSF for 3 days was
sufficient to elevate the levels of LTB4 in the conditioned
medium as compared to control cultures treated with M-
CSF alone (M-CSF+IL-23: 3579 3.7 pg/ml, M-CSE:
5.1 2.0 pg/ml, P<0.01) as detected by EIA (Figure 1a). To
investigate whether the expression of LTB4 is associated
with cells of myeloid origin, human PBMC adherent cells
(devoid of nonadherent lymphocytes) were cultured for
8 days in the presence of M-CSE. We determined by im-
munofluorescence that the biosynthetic enzymes involved
in LTB4 production, 5-LO and LTA4H as well as LTB4 re-
ceptors BLT1 and BLT2, were present on macrophages
(Figure 1b). To investigate whether this expression is main-
tained in terminally differentiated multinucleated osteo-
clasts, PBMC adherent cells were cultured for 8 days in the
presence of M-CSF and further differentiated by exogenous
addition of RANKL for 6 days. As in macrophages, multi-
nucleated giant cells also expressed both the biosynthetic
enzymes involved in LTB4 production (5-LO and LTA4H)
and LTB4 receptors BLT1 and BLT2 (Figure 1b). Collect-
ively, our data show that macrophages and osteoclasts can
both express and respond to LTB4.

LTB4 activates intracellular calcium flux via BLT1 and BLT2
receptors and via a PLC- and CRAC-dependent pathway
Because macrophages and osteoclasts express LTB4
receptors, we next sought to investigate the effects of
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Figure 1 Leukotriene B4 biosynthetic enzymes and receptors are expressed in both macrophages and osteoclasts. (a) Quantification of
leukotriene B4 (LTB4) levels by enzyme-linked immunoassay in the conditioned medium of human peripheral blood mononuclear cells (PBMCs)
treated with 25 ng/ml macrophage colony-stimulating factor (M-CSF) and 10 ng/ml interleukin 23 (IL-23) for 3 days. Representative data from three
experiments are shown. **P < 0.01. (b) Immunofluorescence of human PBMCs cultured with either M-CSF alone for 8 days or M-CSF + receptor activator
of nuclear factor kB ligand (RANKL) for 14 days showing the expression of BLT1, BLT2, 5-lipoxygenase (5-LO) and leukotriene A4 hydrolase (LTA4H) in
mononuclear and multinucleated giant cells. Representative images from three experiments are shown. 4'6-diamidino-2-phenylindole (DAPI) is blue
and BLT1, BLT2, 5-LO and LTA4H are in red. The scale bars represent 20 um in Figure 1b.

LTB4 in macrophage-to-osteoclast differentiation. We
observed that exogenous addition of LTB4 in in vitro hu-
man PBMCs cultured in the presence of M-CSF for
8 days was sufficient to induce calcium flux peaks 20 sec-
onds after stimulation as compared to addition of media
alone (LTB4 addition: 27.5 2.5% cells, media addition:

11.25 1.5% cells, P <0.05) (Figure 2a, b and c). The ob-
served calcium flux was completely abrogated in cell
cultures pretreated with 100 nM of BLT1 and BLT2 an-
tagonists (Figure 2a and b). Because these receptors are
G protein coupled and, once bound to LTB4, release
PLC-dependent endoplasmic reticulum stores of cal-
cium, we treated the cells with a PLC inhibitor to further

understand the sequence of events. As expected,
8-day M-CSF differentiated PBMC cultures pretreated
with the PLC inhibitor U73122 (1 uM) also lacked any
calcium flux response (Figure 2a and b). Because the
interplay between internal calcium stores and external
calcium channels plays a significant role in maintaining
calcium homeostasis within a cell, we also studied the
requirement of membrane CRAC in LTB4-induced cal-
cium flux [27,28]. Selective inhibition of CRAC channels
with the small molecule inhibitor 2-APB (100 uM) com-
pletely abrogated the calcium response (Figure 2a and b).
We ensured sufficient presence of extracellular calcium
with the addition of 1.5 mM calcium to the cell cultures
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Figure 2 Leukotriene B4 activates intracellular calcium flux. (a) Intracellular calcium flux measurements in human peripheral blood
mononuclear cells (PBMCs) cultured with macrophage colony-stimulating factor (M-CSF) for 8 days, labeled with fluo-4 AM, pretreated with
either dimethyl sulfoxide control, 100 nM BLT1 and BLT2 antagonist cocktail, 1 uM phospholipase C (PLC) inhibitor U73122 or 100 uM calcium
release activated channel (CRAC) inhibitor 2-aminoethoxydiphenyl borate for 15 minutes prior to imaging in real time followed by acute
activation with 10 nM LTB4. Representative data from three experiments are shown. The scale bars represent 10 um. (b) Normalized fluo-4 AM
intensity plotted for representative cells over the 600-second time course. (c) Graphical representation of the percentage of cells fluxing calcium
in human PBMCs cultured with M-CSF for 8 days, labeled with fluo-4 AM and acutely activated with either 100 ng/ml receptor activator of nuclear
factor kB ligand (RANKL), 10 nM LTB4 or both simultaneously. Representative data and images from three experiments are shown. *P < 0.05.
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prior to measurements. Moreover, pretreatment with
the above-mentioned BLT1/BLT2 antagonists, PLC and
CRAC inhibitors did not decrease the viability of the cells
as compared to the untreated cells, suggesting a key PLC-
and CRAC driven, calcium-dependent pathway following
LTB4 stimulation (data not shown).

Intracellular calcium levels play a critical role in osteo-
clastogenesis. Therefore, we compared the calcium flux
elicited by LTB4 in our cultures with RANKL, a potent
osteoclastogenic factor. Our data show no significant dif-
ference in the percentage of cells responding with cal-
cium activity between LTB4 (27.5 2.5% cells) and
RANKL (23.67 2.5% cells) (Figure 2c). However, simul-
taneous activation with both RANKL and LTB4 induced
51.17 5.2% cells to flux calcium, which was significantly
higher than the treatments with RANKL or LTB4 alone
(P<0.05 with RANKL and P=0.053 with LTB4). This
suggests that RANKL and LTB4 can act synergistically
to effectively signal for osteoclast differentiation.

IL-23 induces phosphorylation of PLA; in macrophages
via PI3K

Intracellular calcium flux, which induces osteoclastogen-
esis, also plays a role in activating the leukotriene
biosynthesis pathway via the PLA, pathway. Using a
phospho-PLA, antibody, we detected by immunofluores-
cence in 8-day M-CSF differentiated PBMC cultures, an
induction of PLA, phosphorylation after treatment with
10 nM LTB4 acutely for 10 minutes as compared with
treatment with the media control (P < 0.001) (Figure 3a).
PLA, phosphorylation was commensurate with a three-
fold increase in the percentage of cells fluxing calcium
over the media-alone control (LTB4: 32.9 5.6% cells,
media: 8.4 2.9% cells, P<0.01). The baseline of PLA,
phosphorylation in the controls is attributable to the
presence of low levels of serum in the media, which
were necessary for the calcium experiments and can ac-
tivate mitogen-activated protein kinases (MAPKs) that
phosphorylate PLA, [11]. The LTB4-induced phosphor-
ylation was restored to baseline levels in the presence of
100 nM BLT1 and BLT?2 antagonists. Thus, our results
clearly demonstrate that LTB4 can act via its receptors
BLT1 and BLT2 to significantly activate the phosphory-
lated form of PLA,, which is an important mediator of
downstream LTB4 production.

Next, we investigated whether IL-23 could activate the
LTB4 synthesis pathway directly in macrophages. PI3K
associates with the IL-23 receptor SH2 docking site at
Tyr397 and can also phosphorylate PLA, at Ser505
[29,30]. Hence, we investigated the requirement of PI3K
in IL-23-mediated LTB4 production. Because phosphor-
ylation of PLA, is dependent on intracellular calcium
levels, we first measured IL-23-mediated calcium flux in
8-day M-CSF treated PBMCs. Acute addition of 100 ng/
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ml IL-23 induced a threefold increase in the percentage
of cells fluxing calcium as compared to the addition of
media alone (IL-23: 57.5 3.8% cells, media: 13.3 5.4%
cells, P<0.01) (Figure 3b). Pretreatment with 1 puM
Wortmannin, a potent PI3K inhibitor, for 15 minutes re-
duced the ability of cells to flux calcium via IL-23 stimu-
lation by almost 50%. Furthermore, treatment of these
macrophages with 100 ng/ml IL-23 for 10 minutes also
elevated the expression of the phosphorylated form of
PLA, by twofold over media-only controls as measured
by immunofluorescence, and this increased expres-
sion was interrupted to baseline levels in the pres-
ence of Wortmannin (Figure 3b). Notably, treatment with
Wortmannin did not affect the cell viability as compared
to the untreated cells (data not shown).

LTB4 initiates osteoclastogenesis independent of RANKL
signaling

Because LTB4 can activate calcium signaling independently
of the canonical RANKL-RANK pathway in macrophages,
we were interested in further investigating whether LTB4
was able to induce osteoclastogenesis independently of
RANKL. We first assessed whether LTB4 stimulation was
able to activate the transcription of osteoclast-related genes.
Human PBMCs stimulated for 14 days with M-CSF + LTB4
displayed markedly increased expression in message
levels of NFATCI (2-fold, P <0.05), cathepsin K (10-fold,
P <0.05), MMP9 (7-fold, P=0.2024), TRAP (2.5-fold, P <
0.05) and B3 integrin (2-fold, P=0.056) as compared to
treatment with M-CSF alone (Figure 4a and b). We further
isolated human PBMCs and treated them with M-CSE, or
M-CSF + RANKL, or M-CSF +LTB4, over a period of
14 days and measured osteoclastogenesis by quantitative
analysis of TRAP" multinucleated cells capable of F-actin
ring formation (Figure 4b and c). Interestingly, LTB4 was
able to form giant multinuclear TRAP" cells with F-actin
ring structures, though in significantly lesser quantity as
compared to RANKL (P < 0.05) (Figure 4b). Whereas LTB4
activation formed more than 3-fold more giant TRAP"
multinuclear cells as compared to M-CSF alone (LTB4: 48
10 cells, M-CSF: 15 3 cells, P <0.05), RANKL was able
to form about 20-fold more osteoclast-like cells (234 48
cells, P<0.01). Combined treatment with RANKL and
LTB4 significantly elevated the TRAP" count to 530 179
cells over LTB4 treatment alone (P < 0.01) (Figure 4b). Fur-
thermore, these PBMCs treated with either M-CSF +
RANKL or M-CSF + LTB4 for 14 days were equally capable
of forming distinct F-actin ring structures as evidenced by
phalloidin-FITC staining (Figure 4c).

Discussion

Alternate pathways for osteoclastogenesis have recently
been a key focus for developing novel therapies for auto-
immune arthritis. Although the leukotriene pathway has
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Figure 3 Human interleukin 23 activates the leukotriene B4 synthesis pathway in macrophages via phosphatidylinositol 3-kinase. (a)
Graphical representation of the percentage of cells fluxing calcium and immunofluorescence imaging of phosphorylated phospholipase A, (p-PLA,)
in human peripheral blood mononuclear cells (PBMCs) cultured with macrophage colony-stimulating factor (M-CSF) for 8 days, followed by acute
treatment of 10 nM leukotriene B4 (LTB4) with or without pretreatment of 100 nM BLT1 and BLT2 antagonists. (b) Graphical representation of the
percentage of cells fluxing calcium and immunofluorescence imaging of p-PLA, in human PBMCs cultured with M-CSF for 8 days, acutely activated
with 100 ng/ml of interleukin 23 (IL-23) with or without pretreatment of 1 uM Wortmannin for 30 minutes. For calcium experiments, cells were also
prelabeled with fluo-4 AM calcium dye. For p-PLA, expression, cells were fixed, permeabilized and labeled for p-PLA,, and mean fluorescence intensity
(MFI) was measured for >30 cells. PI3-K, Phosphatidylinositol 3-kinase. 4'6-diamidino-2-phenylindole (DAPI) is blue and p-PLA, expression is in red
(scale bars represent 20 um). Representative data and images from three experiments are shown. **P < 0.01 and ***P < 0.001.

previously been shown to activate osteoclast formation, macrophages toward osteoclast differentiation. We high-

the precise mechanism of this differentiation and rela-
tionship with other critical inflammatory players, such
as IL-23, has remained unexplored [31]. In this study,
we demonstrate that IL-23 is an important activator
of LTB4 production, which can significantly direct

light a novel pathway by which IL-23 can initiate LTB4
production from myeloid cells as well as drive their ter-
minal differentiation to osteoclasts (Figure 5).

We have previously shown a distinct link between IL-23
and neutrophil activation, highlighting the innate immune
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Figure 4 Leukotriene B4 initiates osteoclastogenesis independent of receptor activator of nuclear factor kB ligand signaling. (a) and
(b) Gene expression analysis of human peripheral blood mononuclear cell (PBMCs) cultured with macrophage colony-stimulating factor (M-CSF),
or M-CSF + leukotriene B4 (LTB4), for 8 or 14 days, showing the differential expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATCI),
cathepsin K, tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase 9 (MMP9) and 5 integrin. (b) Cytochemical staining for TRAP in
human PBMCs cultured with M-CSF, M-CSF + RANKL, M-CSF + LTB4, and M-CSF + RANKL + LTB4 for 14 days, showing the number of TRAP®
multinuclear cells (three or more nuclei) per frame of view. (c) Imaging of TRAP cytochemical staining and phalloidin staining in PBMCs cultured with
M-CSF, M-CSF + RANKL, or M-CSF + LTB4 for 14 days (scale bars represent 20 um). Representative data and images from three experiments are shown.
*P <005 and **P < 0.01.
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system axis in rheumatoid arthritis [5]. Neutrophils are
abundantly activated in an inflammatory response and
play a key role in exacerbating inflammation in inflamma-
tory arthritis [32,33]. Although they release several cyto-
kines, such as IL-1p, IL-6 and TNE, their release of lipid
inflammatory mediators, such as prostaglandins and leu-
kotrienes, also contributes effectively to recruit neutro-
phils to inflamed joints [17]. Although this may be their
primary and most well-characterized function, leukotri-
enes also act on effector cells via their BLT1/BLT?2 recep-
tors and activate other cell types [34,35]. Furthermore,
leukotrienes may also be released from monocyte/macro-
phage populations, which, in the arthritis model, may lead
to continuous autocrine production of LTB4 and en-
hanced osteoclastogenesis from macrophage precursors.
Although both IL-23 and LTB4 are known separately for
their inflammatory potential, this study demonstrates a
novel finding of IL-23 stimulating LTB4 synthesis in mye-
loid cell populations present in our cultured human

PBMCs. In physiologic conditions, this may function not
only to recruit neutrophils to joint spaces and exacerbate
the inflammatory conditions but also to act as a comple-
mentary secondary pathway for continuous osteoclast dif-
ferentiation leading to bone loss.

Herein we demonstrate the presence of LTB4 recep-
tors and LTB4 biosynthetic enzymes in macrophages as
well as fully matured, giant multinuclear cells. We show
that LTB4 autocrine activity also provides for continuous
osteoclast differentiation via BLT1/BLT2 receptors on
macrophages due to PLA, activation. Furthermore, we
also demonstrate that IL-23 phosphorylates PLA, in
macrophages to facilitate LTB4 production. IL-23 may
trigger macrophages to release a variety of proinflamma-
tory cytokines such as TNF and IL-1f, which can also
activate PLA, [36,37]. However, neither in vivo nor
in vitro overexpression of IL-23 significantly altered sol-
uble RANKL (sRANKL), TNF or IL-1p levels [5]. In
keeping with our observations, other groups have also
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shown that IL-23 induced osteoclastogenesis in the ab-
sence of exogenous sRANKL in human PBMCs [38].
Similarly, in our in vitro system, IL-23 in the absence of
exogenous sRANKL dose-dependently induced osteo-
clast formation, and enzyme-linked immunosorbent
assay (ELISA) analysis of the conditioned medium did
not detect sSRANKL in the conditioned medium, con-
firming these findings. Although other groups have con-
firmed these findings, an upregulation of RANK mRNA
expression following IL-23 stimulation of monocytes has
been observed [39]. Therefore, it may be possible that
sensitized myeloid cells respond to low levels of RANKL
(undetectable by ELISA). Nevertheless, IL-23 induction
of RANKL is not as important as the fact that IL-23 can
induce RANKL-independent osteoclastogenesis via the
regulation of an IL-17 and TNF mechanism [40].

Our data demonstrate a pathway where IL-23 can acti-
vate the phosphorylation of PLA, via a PI3K-calcium
flux dependent pathway, thereby highlighting an im-
portant alternate mechanism by which LTB4 produced
from macrophages induces osteoclastogenesis. This acti-
vation pathway, coupled with LTB4s own autocrine abil-
ity, can lead to exacerbation of inflammatory conditions
and bone loss in autoimmune arthritis.

IL-23 is capable of activating calcium transients in
macrophages and these transients are critical for calcine-
urin dependent NFATC1 activation [41]. NFATCI is a
key transcriptional factor involved in osteoclastogenesis
and is tightly regulated via calcineurin, a calcium
dependent phosphatase responsible for activating NFATC1
and allowing its translocation to the nucleus [41]. We
also show that LTB4 can activate significant calcium
flux via its receptors and this activity is dependent on
both internal and external sources of calcium as dem-
onstrated by the use of inhibitors to phospholipase C
and membrane bound CRAC channels [28]. Usage of
the 2-APB inhibitor requires caution as it has been
shown to block both store operated calcium entry
(SOCE) as well as inositol triphosphate gated channels
within calcium stores [42]. However, at concentrations
as high as 100 uM, which we used in the present study,
2-APB has been shown to effectively inhibit SOCE [43].
Recently, the store-operated calcium channel Orail and
certain transient receptor potential channels have been
shown to be important calcium channels involved in
osteoclast activation; therefore, the regulation of cal-
cium channels by inflammatory mediators may play a
critical role in bone destruction [27,44,45]. Indeed,
LTB4 was able to facilitate osteoclast development, as
evidenced by the formation of multinucleated TRAP*
cells that were capable of F-actin ring formation. More-
over, LTB4-mediated calcium signaling was capable of ac-
tivating the NFATCI transcription factor and initiating the
transcription of osteoclast-related genes such as cathepsin
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K, MMP9, TRAP (ACPS5) and f53 integrin (ITGB3), which
are all required for bone resorption. In our in vitro experi-
ments, treatment with LTB4 produced significantly fewer
osteoclasts and required a longer time as compared to
RANKL stimulation. Activation with both RANKL and
LTB4 achieved more TRAP" multinucleated cells, as well
as more cells fluxing calcium, in response to the dual
stimulus. This implicates LTB4 as a definite proinflamma-
tory, costimulatory signal in the development of arthritis
in the presence of RANKL.

Conclusions

Our study reveals novel links between IL-23 signaling
and LTB4 activation that portrays the importance of the
innate immune response in building an inflammatory
milieu during the onset of autoimmune arthritis. IL-23
can facilitate the release of LTB4 from myeloid cells,
which then can direct macrophages toward giant multi-
nuclear osteoclasts independently of RANKL stimula-
tion. Both LTB4 and IL-23 can activate PLA, in
macrophages, which leads to a continuous production of
LTB4, thereby further heightening the inflammatory re-
sponse. Together with RANKL, LTB4 acts as an import-
ant costimulatory signal and is a prominent target to
develop effective therapies in inflammatory arthritis.

Abbreviations

2-APB: 2-Aminoethoxydiphenyl borate; CRAC: Calcium release activated
channel; DAPI: 4’ 6-diamidino-2-phenylindole; EIA: Enzyme-linked
immunoassay; ELISA: Enzyme-linked immunosorbent assay; FITC: Fluorescein
isothiocyanate; GPCR: G protein coupled receptor; IL: Interleukin; 5-LO:
5-Lipoxygenase; LTA4H: Leukotriene A4 hydrolase; LTB4: Leukotriene B4;
LTC4S: Leukotriene C4 synthase; MAPK: Mitogen-activated protein kinase;
M-CSF: Macrophage colony-stimulating factor; MFI: Mean fluorescence
intensity; MMP9: Matrix metalloproteinase 9; NFATC1: Nuclear factor of
activated T-cells, cytoplasmic 1; PBMC: Peripheral blood mononuclear cell;
PBS: Phosphate-buffered saline; PFA: Paraformaldehyde; PI3K: Phosphatidylinositol
3-kinase; PLA,: Phospholipase A,; PLC: Phospholipase C; RANKL: Receptor activator
of nuclear factor kB ligand; RT: Room temperature; SOCE: Store-operated calcium
entry; TNF: Tumor necrosis factor; TRAP: Tartrate-resistant acid phosphatase.

Competing interests
The authors declare that they have no competing interests.

Authors contributions

ND performed the immunofluorescence experiments, calcium
measurements, osteoclast assays and statistical analysis and drafted the
manuscript. YHB and DW participated in the calcium measurements and
osteoclast assays. LNB and MEG participated in the study design and
coordination and helped to revise the manuscript. IEA conceived of and
designed the study, supervised and coordinated all the experiments and
wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The research reported in this publication was partly supported by SHC
250862 and the National Institute of Arthritis and Musculoskeletal and Skin
Diseases of the National Institutes of Health under award number RO1
AR062173 (to IEA). The content of this article is solely the responsibility of
the authors and does not necessarily represent the official views of the
National Institutes of Health.



Dixit et al. Arthritis Research & Therapy 2014, 16:496
http://arthritis-research.com/content/16/6/496

Author details

'Division of Rheumatology, Allergy and Clinical Immunology, University of
California, Davis, 451 Health Sciences Drive, CA 95616, USA. “Department of
Physiology and Membrane Biology, Shriners Hospitals for Children Northern
California, Sacramento, 2425 Stockton Blvd, CA 95817, USA. *Institute for
Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern
California, Sacramento, 2425 Stockton Blvd, CA 95817, USA.

Received: 1 May 2014 Accepted: 17 November 2014
Published online: 02 December 2014

References

1.

Avrai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson
DM, Suda T: Commitment and differentiation of osteoclast precursor cells
by the sequential expression of c-Fms and receptor activator of nuclear
factor kB (RANK) receptors. J Exp Med 1999, 190:1741 1754.

Takeshita S, Kaji K, Kudo A: Identification and characterization of the new
osteoclast progenitor with macrophage phenotypes being able to
differentiate into mature osteoclasts. J Bone Miner Res 2000, 15:1477 1488.
Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y: Tumor
necrosis factor-a (TNF) stimulates RANKL-induced osteoclastogenesis via
coupling of TNF type 1 receptor and RANK signaling pathways. J Biol
Chem 2001, 276:563 568.

Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K; Ishiyama S, Saito S,
Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T: IL-17 in synovial fluids
from patients with rheumatoid arthritis is a potent stimulator of
osteoclastogenesis. J Clin Invest 1999, 103:1345 1352.

Adamopoulos IE, Tessmer M, Chao CC, Adda S, Gorman D, Petro M, Chou
CC, Pierce RH, Yao W, Lane NE, Laface D, Bowman EP: IL-23 is critical for
induction of arthritis, osteoclast formation, and maintenance of bone
mass. J Immunol 2011, 187:951 959.

Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y,
Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H: Th17
functions as an osteoclastogenic helper T cell subset that links T cell
activation and bone destruction. J Exp Med 2006, 203:2673 2682.

Hein P, Frank M, Hoffmann C, Lohse MJ, Bnemann M: Dynamics of
receptor/G protein coupling in living cells. EMBO J 2005, 24:4106 4114.
Hur EM, Kim KT: G protein-coupled receptor signalling and cross-talk:
achieving rapidity and specificity. Cell Signal 2002, 14:397 405.

Hikiji H, Ishii S, Yokomizo T, Takato T, Shimizu T: A distinctive role of the
leukotriene B4 receptor BLT1 in osteoclastic activity during bone loss.
Proc Natl Acad Sci U S A 2009, 106:21294 21299.

Samuelsson B: An elucidation of the arachidonic acid cascade: discovery
of prostaglandins, thromboxane and leukotrienes. Drugs 1987, 33:2 9.
Leslie CC: Properties and regulation of cytosolic phospholipase A,. J Biol
Chem 1997, 272:16709 16712.

Mandal AK, Jones PB, Bair AM, Christmas P, Miller D, Yamin TT, Wisniewski D,
Menke J, Evans JF, Hyman BT, Bacskai B, Chen M, Lee DM, Nikolic B,
Soberman RJ: The nuclear membrane organization of leukotriene
synthesis. Proc Natl Acad Sci U S A 2008, 105:20434 20439,

Mathis S, Jala VR, Haribabu B: Role of leukotriene B4 receptors in
rheumatoid arthritis. Autoimmun Rev 2007, 7:12 17.

Yokomizo T: Leukotriene B4 receptors: novel roles in immunological
regulations. Adv Enzym Regul 2011, 51:59 64.

Mathis SP, Jala VR, Lee DM, Haribabu B: Nonredundant roles for leukotriene
B4 receptors BLT1 and BLT2 in inflalmmatory arthritis. J Immunol 2010,
185:3049 3056.

Lee JM, Park H, Noh AL, Kang JH, Chen L, Zheng T, Lee J, Ji SY, Jang CY,
Shin CS, Ha H, Lee ZH, Park HY, Lee DS, Yim M: 5-Lipoxygenase mediates
RANKL-induced osteoclast formation via the cysteinyl leukotriene
receptor 1. J Immunol 2012, 189:5284 5292.

Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP, Austen KF, Lee DM:
Neutrophil-derived leukotriene B4 is required for inflammatory arthritis.
J Exp Med 2006, 203:837 842.

Iversen L, Kragballe K, Ziboh VA: Significance of leukotriene-A4 hydrolase
in the pathogenesis of psoriasis. Skin Pharmacol 1997, 10:169 177.

Csoma Z, Kharitonov SA, Balint B, Bush A, Wilson NM, Barnes PJ: Increased
leukotrienes in exhaled breath condensate in childhood asthma. Am J
Respir Crit Care Med 2002, 166:1345 1349,

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 11 of 12

Adamopoulos IE, Sabokbar A, Wordsworth BP, Carr A, Ferguson DJ,
Athanasou NA: Synovial fluid macrophages are capable of osteoclast
formation and resorption. J Pathol 2006, 208:35 43.

Lin AH, Morris J, Wishka DG, Gorman RR: Novel molecules that antagonize
leukotriene B4 binding to neutrophils. Ann N Y Acad Sci 1988, 524:196 200.
Silbaugh SA, Stengel PW, Cockerham SL, Roman CR, Saussy DL Jr, Spaethe
SM, Goodson T Jr, Herron DK, Fleisch JH: Pulmonary actions of LY255283,
a leukotriene B4 receptor antagonist. Eur J Pharmacol 1992, 223:57 64.
Shugg RP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, Pereverzev A,
Lannutti BJ, Jirik FR, Dixon SJ, Sims SM: Effects of isoform-selective
phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on
cytoskeletal organization, survival, and resorption. J Biol Chem 2013,
288:35346 35357.

Nakamura |, Lipfert L, Rodan GA, Le TD: Convergence of a,)Bs integrin-
and macrophage colony stimulating factor-mediated signals on
phospholipase Cy in prefusion osteoclasts. J Cell Biol 2001, 152:361 373.
Mentaverri R, Kamel S, Brazier M: Involvement of capacitive calcium entry
and calcium store refilling in osteoclastic survival and bone resorption
process. Cell Calcium 2003, 34:169 175.

Shahrara S, Huang Q, Mandelin AM 2nd, Pope RM: TH-17 cells in
rheumatoid arthritis. Arthritis Res Ther 2008, 10:R93.

Zhou Y, Lewis TL, Robinson LJ, Brundage KM, Schafer R, Martin KH, Blair HC,
Soboloff J, Barnett JB: The role of calcium release activated calcium
channels in osteoclast differentiation. J Cell Physiol 2011, 226:1082 1089.
Kajiya H: Calcium signaling in osteoclast differentiation and bone
resorption. Adv Exp Med Biol 2012, 740:917 932.

Floss DM, Mrotzek S, Kicker T, Schrder J, Grtzinger J, Rose-John S,

Scheller J: Identification of canonical tyrosine-dependent and non-canonical
tyrosine-independent STAT3 activation sites in the intracellular domain of
the interleukin 23 receptor. J Biol Chem 2013, 288:19386 19400.

Myou S, Leff AR, Myo S, Boetticher E, Meliton AY, Lambertino AT, Liu J, Xu C,
Munoz NM, Zhu X: Activation of group IV cytosolic phospholipase A2 in
human eosinophils by phosphoinositide 3-kinase through a mitogen-
activated protein kinase-independent pathway. J Immunol 2003,
171:4399 4405.

Garcia C, Boyce BF, Gilles J, Dallas M, Qiao M, Mundy GR, Bonewald LF:
Leukotriene B, stimulates osteoclastic bone resorption both in vitro and
in vivo. J Bone Miner Res 1996, 11:1619 1627.

Sadik CD, Kim ND, Iwakura Y, Luster AD: Neutrophils orchestrate their own
recruitment in murine arthritis through C5aR and FcyR signaling. Proc
Natl Acad Sci U S A 2012, 109:E3177 E3185.

Monach PA, Nigrovic PA, Chen M, Hock H, Lee DM, Benoist C, Mathis D:
Neutrophils in a mouse model of autoantibody-mediated arthritis:
critical producers of Fc receptor y, the receptor for C5a, and lymphocyte
function associated antigen 1. Arthritis Rheum 2010, 62:753 764.

Sharma RK, Chheda Z, Jala VR, Haribabu B: Expression of leukotriene B,
receptor-1 on CD8" T cells is required for their migration into tumors to
elicit effective antitumor immunity. J Immunol 2013, 191:3462 3470.
Matsunaga Y, Fukuyama S, Okuno T, Sasaki F, Matsunobu T, Asai Y,
Matsumoto K, Saeki K, Oike M, Sadamura Y, Machida K, Nakanishi Y, Kubo M,
Yokomizo T, Inoue H: Leukotriene B4 receptor BLT2 negatively regulates
allergic airway eosinophilia. FASEB J 2013, 27:3306 3314.

Lee CW, Lin CC, Lee IT, Lee HC, Yang CM: Activation and induction of
cytosolic phospholipase A, by TNF-a mediated through Nox2, MAPKs,
NF-kB, and p300 in human tracheal smooth muscle cells. J Cell Physiol
2011, 226:2103 2114.

Lee IT, Lin CC, Cheng SE, Hsiao LD, Hsiao YC, Yang CM: TNF-a induces
cytosolic phospholipase A, expression in human lung epithelial cells via
JNK1/2- and p38 MAPK-dependent AP-1 activation. PLoS One 2013, 8:
e72783. A published erratum appears in PLoS One 2013, 8(12). doi:10.1371/
annotation/f56711b9-78f1-49ed-9116-872913e98867.

Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N,
Kotake S: IL-23 induces human osteoclastogenesis via IL-17 in vitro, and
anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis
Res Ther 2007, 9:R96.

Garg HG, Hales CA (Eds): Chemistry and Biology of Hyaluronan. Oxford, UK:
Elsevier; 2004.

Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, Kotake S:
IL-17 induces osteoclastogenesis from human monocytes alone in the
absence of osteoblasts, which is potently inhibited by anti-TNF-a



Dixit et al. Arthritis Research & Therapy 2014, 16:496
http://arthritis-research.com/content/16/6/496

41.

42.

43.

44,

45.

antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem
2009, 108:947 955.

Hogan PG, Chen L, Nardone J, Rao A: Transcriptional regulation by calcium,
calcineurin, and NFAT. Genes Dev 2003, 17:2205 2232.

Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt
CM: 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of
store-operated Ca** entry but an inconsistent inhibitor of InsPs-induced
Ca** release. FASFB J 2002, 16:1145 1150.

Prakriya M, Lewis RS: Potentiation and inhibition of Ca®* release-activated
Ca** channels by 2-aminoethyldiphenyl borate (2-APB) occurs
independently of IP3 receptors. J Physiol 2001, 536:3 19.

Hwang SY, Putney JW: Orail-mediated calcium entry plays a critical role
in osteoclast differentiation and function by regulating activation of the
transcription factor NFATc1. FASEB J 2012, 26:1484 1492

Ong EC, Nesin V, Long CL, Bai CX, Guz JL, Ivanov IP, Abramowitz J,
Birnbaumer L, Humphrey MB, Tsiokas L: A TRPC1 protein-dependent
pathway regulates osteoclast formation and function. J Bio/ Chem 2013,
288:22219 22232.

doi:10.1186/513075-014-0496-y

Cite this article as: Dixit et al: Leukotriene B4 activates intracellular calcium
and augments human osteoclastogenesis. Arthritis Research & Therapy

2014 16:496.

Page 12 of 12

Submit your next manuscript to BioMed Central
and take full advantage of:

X Convenient online submission

X Thorough peer review

X No space constraints or color Xgure charges

X Immediate publication on acceptance

X Inclusion in PubMed, CAS, Scopus and Google Scholar

X Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Antibodies and reagents
	Osteoclast differentiation from human peripheral blood mononuclear cells
	Immunofluorescence staining
	Real-time calcium measurements
	Real-time PCR
	Statistical analysis

	Results
	LTB4 biosynthetic enzymes and receptors are expressed in both macrophages and osteoclasts in�vitro
	LTB4 activates intracellular calcium flux via BLT1 and BLT2 receptors and via a PLC- and CRAC-dependent pathway
	IL-23 induces phosphorylation of PLA2 in macrophages via PI3K
	LTB4 initiates osteoclastogenesis independent of RANKL signaling

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

