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Abstract

Studying the factors that control gene expression is
of substantial importance for rheumatic diseases with
poorly understood etiopathogenesis. In the past, gene
expression microarrays have been used to measure
transcript abundance on a genome-wide scale in a
particular cell, tissue or organ. Microarray analysis has
led to gene signatures that differentiate rheumatic
diseases, and stages of a disease, as well as response
to treatments. Nowadays, however, with the advent of
next-generation sequencing methods, massive parallel
sequencing of RNA tends to be the technology of
choice for gene expression profiling, due to several
advantages over microarrays, as well as for the detection
of non-coding transcripts and alternative splicing events.
In this review, we describe how RNA sequencing
enables unbiased interrogation of the abundance and
complexity of the transcriptome, and present a typical
experimental workflow and bioinformatics tools that
are often used for RNA sequencing analysis. We also
discuss different uses of this next-generation sequencing
technology to evaluate rheumatic disease patients and
investigate the pathogenesis of rheumatic diseases such
as rheumatoid arthritis, systemic lupus erythematosus,
juvenile idiopathic arthritis and Sjégren’s syndrome.

Introduction

Gene expression profiling is the analysis of the expres-
sion or activity of genes, in order to understand how
genes contribute to certain biological functions, and to
elucidate the pathogenic mechanisms of diseases and
disorders. In order to acquire new information about the
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role of genes under various conditions, gene expression
is typically measured in different conditions or tissues,
such as at different time points, or between normal and
cancer/disease cells. Differential expression (DE) analysis
between conditions produces gene signatures that are
characteristic of the condition or disease being studied.
For example, a gene signature in rheumatoid arthritis
(RA) is a collection of genes that are either up- or down-
regulated when compared with normal cells (for example,
monocytes). In the field of rheumatic diseases, gene ex-
pression profiling studies have used DNA microarrays
extensively [1-3]. DNA microarrays, introduced over 15
years ago, have been routinely used as a gene expression
analysis approach that can measure transcript abundance
on a genome-wide scale [4]. This technology relies on
arrays of oligonucleotide probes that capture mRNA com-
plementary sequences (cDNA) present in biological sam-
ples at various concentrations. Microarray assays are ideal
for targeted identification of already known messenger
RNAs. However, their limited coverage does not allow the
detection of rare or novel transcripts, splice variants, or
low-abundance transcripts. Microarrays have low sen-
sitivity compared with other approaches (for example,
real-time PCR), suffer from the problem of background
hybridization, and have limited dynamic range that often
prevents accurate assessment of low signal intensities.
Such limitations are largely absent in RNA sequencing
(RNA-seq), a next-generation sequencing (NGS) method
largely used for the genome-wide measurement of RNA
abundance and the detection of alternative splicing
events [5, 6]. Compared with microarrays, RNA-seq has
several advantages, such as low background signal, since
RNA sequence reads can often be unambiguously mapped
to unique regions of the genome, increased sensitivity and
high reproducibility between technical and biological
replicates. RNA-seq is free from the probe-specific
hybridization of microarrays, and has a broader dynamic
range, allowing the unbiased detection of novel tran-
scripts, both coding and noncoding. Examples of noncod-
ing transcripts are: long (>200 bp) non-coding RNAs
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(IncRNAs) that are implicated in diverse biological pro-
cesses, are critical for controlling cell state decisions in
pluripotent cells, and may physically associate with chro-
matin proteins to regulate gene expression; enhancer
RNA (eRNA), a class of relatively short non-coding RNA
molecules transcribed from the DNA sequence of enhan-
cer regions, whose transcription is positively correlated
with the mRNA levels of the surrounding protein-coding
genes; microRNA (miRNA), short non-coding RNAs (18
to 24 bp) that can cause silencing or degradation of
mRNA, ultimately leading to a decrease in the amount of
protein, with or without changes in the number of mRNA
transcripts. It also requires relatively small amounts of in-
put RNA and is suitable for detecting alternative spliced
transcripts, alternative promoters and 3" untranslated re-
gion usage, measuring allele-specific expression and detec-
tion of chimeric and fusion transcripts [6-9]. With the
rapid advances in NGS technology, a more comprehensive
and accurate RNA-seq-based transcriptome analysis has
become feasible. Just like microarrays, design of RNA-seq
experiments is important and key factors include number
of replicates, sequencing depth, single-end or paired-end
sequencing and more [6]. Finally, like all NGS-based ex-
periments, RNA-seq produces a great amount of data the
analysis and interpretation of which requires a significant
computational infrastructure, as well as custom analytic
pipelines and databases.

In this review, we present a typical RNA-seq workflow,
experimental choices and data analysis pipelines. We
also discuss recent published studies (Table 1), as well as
related abstracts, showing the variety of uses of this
NGS technology to study the transcriptome of patients
with RA, systemic lupus erythematosus (SLE), juvenile
idiopathic arthritis (JIA), and Sjogren’s syndrome (SS).

Experimental choices in RNA sequencing

In the past few vyears, sequencing technologies and
chemistries have been advancing at a rapid pace. Several
companies offer NGS platforms, with Illumina’s HiSeq
and MiSeq [10], and Life Technologies’ Ion Torrent (Ap-
plied Biosystems) [11] being the leading platforms for

Table 1 Rheumatic disease studies using RNA-seq technology
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RNA-seq. Each has its unique advantages and limita-
tions; thorough overviews and comparisons between sev-
eral NGS platforms are provided in [12-14].

Independently of the technology of choice, a typical
RNA-seq workflow is a multi-step process that includes
RNA and library preparation, sequencing, and data ana-
lysis (Fig. 1). During RNA preparation, the fraction of
RNA to profile is isolated and purified and specific RNA
classes are enriched, either by direct enrichment or
depletion of other classes. There are several target
enrichment methods, such as removal of rRNA or polya-
denylated positive enrichment. Library preparation in-
cludes converting RNA to ¢cDNA, cDNA fragmentation,
attaching platform-specific adapter sequences at the
ends of the cDNA fragments, and library amplification.
Importantly, both RNA and library preparation choices
depend on the sequencing platform used, as well as on
the experimental objective. For example, different prep-
aration libraries are required for the profiling of small
RNA targets, such as miRNA (for example, RNA isolated
through size-selection), nuclear RNA [15], and chromatin-
associated total RNA [16]. The library is then sequenced
on a NGS platform, producing millions of short sequence
reads that correspond to one or both ends of the cDNA
fragments, called single reads (SRs) and paired-end (PE)
reads, respectively. The short reads are then aligned to the
appropriate reference genome and analyzed using pro-
grams that are specific for RNA-seq data analysis and dis-
tinct from those used for microarray analysis.

Researchers face several challenges when designing an
RNA-seq experiment regarding decisions that can affect
both the cost and the accuracy of the experiment. Such
challenges involve selecting the optimal number of repli-
cates and the sequencing depth required to achieve
reliable detection power of DE. As far as replicate choice
is concerned, several studies [17-19], as well as the EN-
CODE RNA-seq standards [20], recommend performing
experiments with two or more biological replicates
(Zhang and colleagues [19] mention that the number of
differentially expressed genes plateaus at approximately
four replicates). Technical replicates from the same library

Disease Sample size Cell type RNA-seq application Reference
JIA 3 JIA patients, 3 patients at clinical remission, 3 healthy controls PBMCs Non-coding RNA (IncRNAs) [48]*

RA 2 RA patients, 2 healthy controls RASFs DE transcript/gene analysis [44]

RA 6 RA patients PBMCs Biomarker discovery [477*

SLE 9 SLE patients, 8 healthy controls Human monocytes DE transcript/gene analysis [45]

SLE 6 SLE patients, 3 healthy controls PBMCs Single gene profiling [53]

SS 50 SS patients, 37 healthy controls Whole blood cells Non-coding RNA (IncRNAs) [49]*

SS 6 SS patients, 3 healthy controls Minor salivary glands Non-coding RNA (miRNAs) [50]

*Non-peer-reviewed abstracts. DE, differential expression; JIA, juvenile idiopathic arthritis; INcRNA, long non-coding RNA; PBMC, peripheral blood mononuclear cell;
RA, rheumatoid arthritis; RASF, rheumatoid arthritis synovial fibroblast; RNA-seq, RNA sequencing; SLE, systemic lupus erythematosus; SS, Sjégren’s syndrome
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Fig. 1 A typical RNA-seq workflow. RNA sequencing (RNA-seq) is a multi-step process that involves designing the experiment, preparing the
RNA sample and the input library, using a next generation sequencing platform, and performing analysis on the short sequenced reads. NGS,

are typically not necessary, due to the high technical re-
producibility achieved by the sequencing technology [17].
The discussion regarding sequencing depth is more com-
plicated since sequencing depth is highly dependent on
the objectives of the RNA-seq study, genome size, and
transcriptome complexity. For example, the ENCODE
RNA-seq standards [20] suggest that transcriptome profil-
ing of polyadenylated positive samples require modest
depths of sequencing, such as 30 million PE reads of
length >30 bp, while for novel transcript discovery and
strong quantification of known transcript isoforms deeper
sequencing is required. A study focusing on the sequen-
cing depth of RNA-seq in chickens [21] suggests that 30
million SRs (75 bp) are needed to achieve reliable meas-
urement of mRNA expression across all genes, while 10
million SRs (75 bp) allow the detection of approximately
80% of annotated chicken genes. However, a study by Liu
and colleagues [22] suggests that 300 million PE reads
(2 x 101 bp) are needed to detect approximately 80% of
the differentially expressed genes from samples that de-
rived from adipose of a healthy individual before and after
systemic administration of endotoxin (lipopolysaccharide
(LPS)), and at least 400 million PE reads are necessary to
achieve approximately 80% detection rate of alternative
splicing events. Although the optimal number of reads per
sample cannot be easily determined without taking into

account several factors of an experiment, most studies
agree that a much higher sequencing depth is required for
the identification of alternative splicing events compared
with DE of genes, and that the depth of sequencing has
more impact on low rather than on high abundance tran-
scripts [22, 23]. Despite sequencing depth being an im-
portant consideration in RNA-seq, it has been shown that
the number of biological replicates is a more significant
factor than sequencing depth, or technical replicates, in
the accurate detection of differentially expressed genes
[18, 23, 24]. Thus, since budget is often a concern, it is
recommended to increase the number of samples,
which correspond to biological replicates, sequenced at
a modest depth, rather than to increase sequencing
depth in fewer samples.

Another decision that researchers have to make before
sending their samples to a sequencing facility for library
preparation is whether to choose SRs or PE reads. As
mentioned above, SRs refer to fragments that are read
by the sequencer from only one end to the other, gener-
ating the sequence of base pairs, while for PE reads the
sequencer starts at one read end, finishes this direction
at the specified read length and then starts another
round of reading from the opposite end of the fragment.
PE reads is a necessary configuration in an RNA-seq ex-
periment when increased mapping accuracy is important
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in order to assess genome rearrangements, identify fu-
sion genes and detect alternative splicing events. Al-
though SRs are usually preferred as an RNA-seq strategy
for measuring transcript abundance due to lower cost, it
is recommended to perform PE sequencing whenever
possible [25, 26].

Finally, multiplexing is a method that allows pooling
libraries from multiple samples into a single sequencing
reaction. In order to identify the ‘origin’ of sequenced
reads, a short nucleotide sequence (approximately six to
seven nucleotides), called the barcode or index, is attached
to each ¢cDNA fragment during library preparation. The
barcodes are read during sequencing, allowing the reads
to be traced back to their original samples. Choosing to
perform RNA-seq multiplexing can reduce the cost of an
experiment, but will also produce smaller number of reads
per sample. For example, a single flow cell lane from an
[lumina HiSeq 2500 platform routinely produces approxi-
mately 200 million SRs for one sample without multiplex-
ing. If four samples are multiplexed, then approximately
50 million SRs per sample will be produced at a much
lower sequencing cost per sample.

Data analysis pipeline

From the data analysis perspective, RNA-seq includes
the following steps: assessment of the quality of the se-
quenced reads (using tools such as FastQC [27]), re-
moval or trimming low quality reads (using tools such as
Trimmomatic, or Sickle), alignment (or mapping) of the
remaining reads to the reference genome and annotation
of transcripts to which reads have been mapped, estima-
tion of transcript abundance, and statistical analysis to
identify DE or splicing among samples. It is important
to note that de novo assembly of RNA-seq data is also
commonly used for studying the transcriptome of spe-
cies without reference genomes, such as non-model or-
ganisms in microbiome and metagenomics studies;
however, discussion of RNA-seq as a de novo transcript
assembly tool is beyond the scope of this review.

Read alignment remains one of the most computation-
ally intensive steps in the entire process, since it requires
the alignment of tens or hundreds of millions of reads to
multiple gigabases for a typical mammalian genome.
Some of the most popular alignment programs used for
RNA-seq include Bowtie/TopHat [25], BWA [28], and
STAR [29]. Importantly, RNA-seq aligners need to iden-
tify reads that map across splice junctions. An evaluation
of alignment algorithms in the RNA-seq context is de-
scribed in [30].

The next step involves estimating the abundance of
known genes or transcripts. Frequently, this involves
determining the number of reads that map to known
genes or transcripts, also known as read counts. In this
analysis, the number of reads supporting each gene or
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transcript according to gene annotation (for example,
RefSeq, ENSEMBL, UCSC Genes) are determined using
programs such as HTSeq [31]. Although read counts are
quantitative approximations of the abundance of target
transcripts, these counts must be normalized to remove
technical biases and parameters inherent in the prepar-
ation steps for RNA-seq, such as the length of the tran-
script and the sequencing depth. For example, deeper
sequencing results in higher counts, biasing comparisons
between different runs with different sequencing depths.
Similarly, longer transcripts are more likely to have reads
mapped to their region, resulting in higher counts, bias-
ing comparisons between transcripts of different lengths.
Fragments per kilobase of exon per million fragments
mapped (FPKM) is a way to normalize read counts;
programs such as Cufflinks [25] also estimate the abso-
lute expression levels of genes/transcripts in FPKM
values. Cufflinks and related programs use intelligent
strategies to assign reads to transcripts when multiple
and partially overlapping transcript isoforms are present.
FPKM values provide user-friendly gene and transcript
level quantifications, suitable for creating heatmap visu-
alizations and comparing expression between genes. It is
important to mention that FPKMs correspond to PE
RNA-seq experiments that produce two reads per frag-
ment, while RPKM values (reads per kilobase of exon
per million fragments mapped) are used when a SR
RNA-seq strategy is applied. Cuffdiff [25], which is part
of Cufflinks, finds differentially expressed genes and
transcripts in more than one condition and tests for sig-
nificant differences.

However, it has been discussed in some studies that
RPKMs/FPKMs have certain limitations that can bias es-
timates of DE [24, 32] and may not be an appropriate
way to normalize RNA-seq reads. Thus, read counts are
typically used as input to programs like DESeq [33],
EdgeR [34] and limma (voom) [35], which are amongst
the most commonly used and freely available DE soft-
ware packages. These programs perform non-FPKM
normalization of read counts (for example, using LOW-
ESS regression, or quantile normalization), estimate
read count fold changes between conditions at the gene
or the transcript level, and assess the statistical signifi-
cance of observed read count differences. Statistical sig-
nificance analysis also includes correction for multiple
testing, often in the form of false discovery rate control.
It is also frequently used in conjunction with minimum
fold-change requirements (for example, 2-fold, 10-fold)
so as to ensure biological relevance. A comprehensive
evaluation of several DE analysis methods for RNA-seq
data can be found in [24].

For the identification of non-coding RNA, such as
miRNA and IncRNA, the data analysis pipelines differ
from the ones used for DE analysis of genes/transcripts.
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After the reads are aligned against the reference genome,
non-coding annotations are used, such as the miRBase
(database of known miRNAs), IncRNAdb (database of
IncRNAs), ncRNAdb (database of non-coding regulatory
RNAs) and others. Related third party analysis tools for
this purpose include mirRanalyzer [36], miRTools [37],
and IncRScan [38]. Similarly, for estimating the expres-
sion of diploid organisms at the haplotype, isoform and
gene levels, specific tools are needed to be part of the
RNA-seq pipeline, such as MMSEQ [39].

Visualization of the mapped reads (that is, either raw
reads or read densities) in a genome browser, such as
the UCSC Genome Browser [40] or the Integrative Gen-
omics Viewer [41], is a common step in the RNA-seq
data analysis pipeline. This genome-wide display of reads
facilitates the exploration of RNA-seq datasets, as well
as hypothesis generation, sharing and integration with
other genomic data, such as published ENCODE tracks.
However, visualization cannot quantify expression levels
nor find global patterns; the steps that were described
before provide the systematic genome-wide quantifica-
tion of information in RNA-seq experiments. Combina-
tions of the tools mentioned above, together with
general bioinformatics tools like R/Bioconductor and
Galaxy, can create different RNA-seq pipelines adapted
to the needs of each project.

Identifying dysregulated pathways in disease cells
RA is a chronic systemic autoimmune disorder that
primarily affects the joints and ultimately leads to their
destruction [42]. It affects approximately 1% of the gen-
eral population and is characterized by functional dis-
ability, and increased morbidity and mortality, mainly
due to accelerated atherosclerosis. RA synovial fibro-
blasts (RASFs) play a vital role in the initiation and
prolongation of RA, due to the production of cytokines,
chemokines, and matrix-degrading enzymes, which lead
to the thickening of the joint membrane, and pro-
gressive destruction of cartilage and bone [43]. The
characterization of cytokine signaling pathways involved
in RA provides an opportunity for the identification of
pro-inflammatory cytokines that can be targeted for
novel RA therapy. A recent study [44] describes the use
of RNA-seq to profile the RASF transcriptome in order
to gain insight into the roles of synovial fibroblasts (SFs)
in RA. The study reveals a complete picture of differen-
tially expressed genes and their isoforms in RASFs, and
provides a global transcriptional insight into the novel
roles of synovial SFs in the pathogenesis of RA. RNA-
seq was performed on samples from RASF-derived RNA
of two adult female RA patients and from SF RNA of
two healthy female donors; the latter were used as nor-
mal controls. A mean value of approximately 84 million
reads per sample was obtained, and DE was estimated
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on the gene and transcript levels, as well as alternative
promoter usage and alternative splicing. The ratio of the
RA group to the control group was estimated for every
gene/transcript along with the statistical significance of
differences between the values, and two categories of
differential gene/isoform expression were identified. The
first one consists of genes/isoforms expressed uniquely in
control SFs or only in RASFs, while the second category
consists of genes/isoforms with at least two-fold up-
regulated or down-regulated expression between control
SFs and RASFs.

In this study [44], several genes and isoforms, not pre-
viously associated with RA, were identified: 214 genes
were found uniquely expressed in SFs and 682 genes
were only expressed in RASFs; 122 and 155 genes were
up- and down-regulated, respectively, by at least two-
fold in RASFs compared with SFs; 343 known and 561
novel isoforms were up-regulated and 262 known and
520 novel isoforms were down-regulated by at least two-
fold. Within the top differentially expressed genes, the
authors identified genes that have been reported previ-
ously to be associated with RA. Importantly, the magni-
tude of difference and the number of differentially
expressed known and novel gene isoforms were all sig-
nificantly higher than achieved previously by DNA mi-
croarrays. Network and pathway analysis performed on
the differentially expressed genes and their known iso-
forms revealed strong representation of inflammatory
response and cell death. Although these pathways have
been predicted previously to correlate with RA, this
study provides a more complete list of genes/isoforms
involved in these pathways. Besides known inflammatory
and immune responses, other novel dysregulated net-
works, such as cell morphology, cell-to-cell signaling
and interaction, cellular movement, cellular growth and
proliferation, cellular development, antigen presentation
pathway, atherosclerosis signaling, LXR/RXR activation,
and role of BRCAI in DNA damage response, were found
to potentially contribute to the pathogenesis of RA. Over-
all, this study shows the first complete transcriptome ana-
lysis of SFs from patients with RA using RNA-seq and
reveals a complete repertoire of active molecules, net-
works and pathways of differentially expressed genes and
their isoforms in RASFs. As suggested by the authors,
follow-up analyses using a larger number of patient
samples will be necessary to validate the alterations in
transcriptional regulation reported in this study and pro-
vide the resources necessary to elucidate the molecular
mechanisms underlying the role of SFs in the pathogenesis
of RA.

The study by Shi and colleagues [45] used RNA-seq to
perform a whole transcriptome analysis of patients with
SLE and compare gene expression with that of healthy
controls. SLE is considered to be the quintessential
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systemic autoimmune disease. Gene expression studies
of peripheral blood mononuclear cells (PBMCs) from
patients with SLE have demonstrated a type I interferon
(IFN) signature and increased expression of inflammatory
cytokine genes. Although SLE is characterized by elevated
type I IEN production, the underlying etiopathogenesis of
SLE remains obscure, particularly at the level of dysregu-
lated gene expression. RNA-seq was used to perform a
comprehensive transcriptome analysis of primary human
monocytes from eight healthy controls and nine SLE pa-
tients, with no evidence of other autoimmunity. The re-
sults of this study are numerous and focus not only on the
altered expression of coding and non-coding transcripts,
but also on a thorough qualitative characterization of the
monocyte transcriptome of SLE patients. First, among
known protein-coding genes, there was evidence of global
repression with a large number of known protein coding
genes expressed in normal monocytes, but silenced in
SLE. These genes were highly enriched with processes
related to embryo development, suggesting that SLE
monocytes are more differentiated. Second, many down-
regulated genes in SLE monocytes were also related to cell
proliferation and cell adhesion, while up-regulated genes
were related to active inflammation, immune response
and cytokine activity. Third, it is reported that SLE pa-
tients had diminished expression of most endogenous
retroviruses and small nucleolar RNAs, but exhibited in-
creased expression of pri-miRNAs. Moreover, some novel
loci expressed at higher abundance in SLE monocytes
were inducible by LPS, known to activate type I IFNs. Al-
though the authors of that study did not perform exten-
sive validation of the classes of these novel transcripts
found to have altered expression, we believe that they
could be eRNAs, whose expression may correlate with
mRNA levels of nearby genes, suggesting the potential
regulatory and functional role of these SLE-specific re-
gions. LPS and microbial products have also been demon-
strated to accelerate renal disease and induce lupus-like
processes in mice. This finding provides an additional per-
spective from which to understand SLE. Importantly, this
study also revealed increased circulating LPS, which in-
duces type I IEN expression, in SLE patients. The authors
examined the concordance of coding genes expressed in
SLE, after stimulation with LPS and after stimulation with
alpha-IFN, and found considerable overlap, demonstrating
that endotoxin can, in part, mimic the type I IFN signature
seen in SLE. Whether endotoxin could represent a bio-
marker for disease severity, as well as how nucleic acid-
driven toll-like receptors TLR7, TLR8 and TLR9 could be
implicated, remains to be determined.

Overall, this study [45] showed that monocytes from
SLE patients exhibit globally dysregulated gene expression.
The transcriptome is not simply altered by the transcrip-
tional activation of a set of genes, but is qualitatively

Page 6 of 10

different in SLE. The identification of novel transcripts, in-
ducible by LPS, suggests that chronic microbial transloca-
tion could contribute to the immunologic dysregulation in
SLE, a new potential disease mechanism. Finally, the im-
portance of this study lies in the identification of multiple
features of altered transcription and processing in SLE,
which potentially contribute to the pathologic processes
of this still enigmatic disease.

RNA-seq for biomarker discovery

Abatacept (CTLA4Ig) belongs to the biologic class of
drugs, which means that it works similarly to natural
substances in the immune system and is used to decrease
inflammation in RA [46]. Although abatacept generally
improves outcomes for RA patients, up to 40 to 50% of
RA patients fail to respond to the drug. The identification
of potential biomarkers that can predict abatacept respon-
siveness is the goal of the study by Henkel and colleagues
[47]. Although this study is briefly described in a non-
peer-reviewed abstract and uses only six subjects, it
showed that RNA-seq-based transcriptome analysis of
PBMC:s of six RA patients treated with abatacept may elu-
cidate mechanistic and biomarker-related pathways al-
tered in PBMCs by drug therapy. RNA samples were
derived from PBMCs from six RA patients treated with
abatacept with or without oral disease-modifying anti-
rheumatic drugs and with or without prednisone. Five of
these patients were positive for anti-CCP antibodies
(markers for diagnosis and prognosis in RA), while all six
patients had active disease at baseline despite recent
tumor necrosis factor inhibitor therapy (based on the
mean DAS28-CRP RA score; DAS28-CRP is a quantitative
measure of RA where values >5.1 indicate high activity of
the disease, <3.2 low activity of the disease and <2.6 remis-
sion). Two groups of patients were found according to
DAS28-CRP scores at baseline and at 6 months after aba-
tacept initiation. The responders group consists of three
of the RA patients, while the other three RA patients
belong to the non-responders group. PBMC RNA sam-
ples from all six patients were sequenced prior to re-
ceiving abatacept and approximately 2 months after
abatacept initiation. DE analysis identified genes that (1)
differed at baseline between abatacept responders and
non-responders, and (2) changed between baseline and
2 months for both groups of responders and non-
responders. A larger proportion of transcripts were sig-
nificantly differentially expressed from baseline to 2
months in the responders group (6,339 transcripts)
compared with non-responders (117 transcripts), while
there was relatively little overlap between the differen-
tially expressed genes of the responders and non-
responders from baseline to 2 months (<10 transcripts).
The authors then focused on the expression of genes
related to T- and B-cell functions to identify baseline
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predictors of response (that is, genes significantly differ-
ent at baseline between responder and non-responder
groups) and 2-month predictors of response (that is,
genes significantly different between 2 months and
baseline). Interestingly, RNA transcripts for IgG iso-
types and IL-17 were reported as 2-month predictors of
a 6-month clinical response, although their baseline
levels of transcripts did not predict efficacy. In contrast,
IL6R was a good baseline predictor of efficacy but its ex-
pression did not change from baseline to 2 months. The
results that are briefly presented in this study [47] dem-
onstrate the potential of RNA-seq as an assay for moni-
toring responses to drug therapies, such as abatacept, in
PBMCs from RA patients.

Identification of non-coding RNA

A recent study [48] that is briefly described in a non-peer-
reviewed abstract used RNA-seq to identify differentially
expressed protein-coding and non-coding transcripts in
three JIA patients with active disease, three patients at
clinical remission, and three healthy controls. JIA, also
known as juvenile rheumatoid arthritis, is the most com-
mon rheumatic disease of childhood, and the goal of this
study is to shed light on the genetic etiology and patho-
genesis of this disease. RNA-seq was used on RNA
samples isolated from PBMCs. DE analysis (>1.2-fold) re-
vealed 119 differentially expressed genes in active disease
compared with control, 83 differentially expressed genes
in the active disease compared with clinical remission
condition, and 19 differentially expressed in clinical remis-
sion compared with control. Differentially expressed genes
in active disease versus control and in active disease ver-
sus clinical remission were associated with connective tis-
sue disorders, immunological disease and inflammatory
disease (for example, CCR5, IL3RA and IL8). Interestingly
though, among the non-protein coding transcripts, the au-
thors observed DE in active disease versus control of two
IncRNAs at chromosomal location 10p12.1 (P = 0.001,
fold change = -3.73 and -4.74) and one IncRNA at 5q33.3
(P = 0.023, fold change = 3.99), with yet unclear biological
functions. Overall, the authors of this abstract used RNA-
seq to create gene signatures of different disease states in
JIA, but also to detect novel IncRNAs that may have func-
tional consequences in JIA.

The study described in [49] (also a non-peer-reviewed
abstract) used RNA-seq to characterize SS patients,
evaluating both coding and non-coding transcripts. SS is
a common, clinically heterogeneous autoimmune dis-
order mainly affecting exocrine glands that disrupts tear
and saliva secretion, leading to symptoms of dry mouth
and eyes. RNA-seq was performed on samples that were
isolated from whole blood of 57 SS patients and 37
healthy controls. DE analysis was performed and a total of
2,614 differentially expressed transcripts were identified.
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SRP14, UQCRB and ATPSI were the most statistically
differentially expressed protein-coding transcripts between
SS and control. Further investigation is required to study
the biological functions of these genes and their poten-
tial role in SS. DE analysis of non-coding transcripts
revealed a IncRNA at 2p25.1, a region found to be
associated with transcription factor binding sites. This
RNA-seq study [49] of SS patients identified candidate
loci and differentially expressed IncRNA regions. Des-
pite the function of these IncRNAs being unknown at
the moment, future studies in SS are required to eluci-
date their functional effects.

Apart from IncRNAs, miRNAs have also been studied
with RNA-seq in SS patients. Tandon and colleagues
[50] used RNA-seq to characterize miRNAs in minor
salivary glands of SS patients and healthy volunteers,
with focus on the identification and discovery of novel
miRNA sequences that may play a role in the disease.
Although SS etiology is complex, with environmental,
genetic, and genomic factors contributing, recently miR-
NAs have been investigated as potential diagnostic bio-
markers in SS [51]. Total RNA was isolated from minor
salivary glands of six patients with SS and three healthy
volunteers. Sequenced reads that were not mapped to
known human miRNAs from miRBase, nor to the
human transcriptome, were used for novel miRNA pre-
dictions by miRanalyzer. A total of 15 novel miRNA
candidates were predicted from this study. Using the
RNAs from individual patients, six of these previously
unidentified miRNAs were validated by quantitative PCR
(that is, hsa-miR-4524b-3p, hsa-miR-4524b-5p, hsa-miR-
5571-3p, hsa-miR-5571-5p, hsa-miR-5100, and hsa-miR-
5572). The authors also tested for the presence of these
miRNAs in other cell types and found all six miRNAs
amplified in the Jurkat T (that is, immortalized T
lymphocyte) and HSG (that is, immortalized human sal-
ivary gland) cell types. Interestingly, one of the validated
novel miRNAs (hsa-miR-5100) was amplified by quanti-
tative PCR in all samples, was differentially expressed
between patients and healthy volunteers, and increased
drastically as salivary flow was decreasing. According to
miRBase, a very similar sequence (two mismatches) was
found in mouse B cells (mmu-miR-5100). Since all pa-
tients selected for this study had low lymphocytic infil-
tration, the authors suggest that hsa-miR-5100 increase
is possibly correlated with salivary dysfunction rather
than with an increase in B cells. Although this study [50]
used RNA-seq to sequence the transcriptome of six SS
patients for the discovery of novel miRNAs, follow-up
studies on a larger cohort of patients are required to val-
idate the disease specificity and potential of this miRNA
as a candidate prognostic marker for SS, as well as to
characterize other miRNAs that correlate with the func-
tional status of the salivary gland.
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Profiling of gene-specific splicing

Interferon regulatory factor 5 (IRF5) is a transcription
factor that regulates the expression of pro-inflammatory
cytokines and type I IFNs and is believed to be involved
in the pathogenesis of SLE. Genetic variants of the IRFS
gene have been associated with susceptibility to SLE in
multiple populations; in each population, a distinct group
of IRF5 single nucleotide polymorphisms and genetic vari-
ants form haplotypes that confer risk for, or protection
from, the development of SLE. It has been demonstrated
that IRF5 expression is up-regulated in primary purified
PBMC s from SLE patients and that up-regulation associ-
ates with IRF5-SLE risk haplotype monocytes [52]. It has
been shown that alternative splicing of IRF5 is elevated in
SLE patients, as well as that human IRF5 exists as multiple
alternatively spliced transcripts with distinct function.
Stone and colleagues [53] used RNA-seq to explore
whether SLE patients express a unique IRF5 transcript sig-
nature compared with healthy donors, and whether an
IRF5-SLE risk haplotype can define the profile of IRFS5
transcripts expressed.

Using standard molecular cloning techniques, the au-
thors first identified and isolated 14 new differentially
spliced IRFS5 transcript variants from purified monocytes
of three healthy donors and six SLE patients. RNA-seq
was subsequently used in order to obtain a more accur-
ate and in-depth estimate of the differences between
IRF5 transcript expression in primary immune cells of
healthy donors and SLE patients. The most important
finding of this study is that RNA-seq results (analyzed
with MMSEQ) correlated with cloning and gave similar
abundance rankings in SLE patients. This indicates the
power of RNA-seq to identify and quantify spliced tran-
scripts of a single gene at a greater depth compared with
molecular cloning. Moreover, the authors of the study
provide evidence that SLE patients express a different
IRF5 transcript signature from healthy donors and that
the IRF5-SLE risk haplotype is among the top four most
abundant IRFS5 transcripts expressed in SLE patients. Fi-
nally, this study suggests that RNA-seq of mammalian
transcriptomes can provide a wealth of information on
transcript assembly and abundance estimates and, be-
cause of its unbiased nature, it can be useful for de novo
junction discovery.

Conclusion

High-throughput NGS has marked the new age of bio-
medical research, since it offers the ability to sequence
entire genomes or transcriptomes within days and to
mine for previously unknown sequences in an unbiased
manner. NGS methods have already been used to study
a variety of biological systems and have been valuable
tools in identifying markers for activity and progression
in a variety of diseases. The advantages of RNA-seq in
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particular allow us to illustrate and study the complexity
of transcriptomes more comprehensively.

In this review, we present studies based on the RNA-
seq transcriptome analysis of patients with RA, SLE and
SS that aim to shed light on the mechanisms of these
rheumatic diseases. Importantly, we show the variety of
RNA-seq applications and their flexibility to provide
both quantitative and qualitative characterization of the
transcriptomes under study. Gene expression profiling
of RA patients was used to study the role of SFs in the
pathogenesis of the disease, and gene signatures of the
monocyte transcriptome in SLE patients showed globally
dysregulated gene expression. Novel IncRNAs were iden-
tified from PBMCs of patients with JIA, as well as from
SS patients, but further studies are required to elucidate
whether these have functional consequences in these
diseases. The discovery of novel miRNAs and disease
biomarkers from minor salivary glands of patients with
SS was also feasible with RNA-seq. In-depth single gene
profiling was achieved by RNA-seq, revealing an IRF5
transcript signature of SLE patients that is distinct from
healthy donors and an IRF5-SLE risk haplotype in the
top four most abundant IRF5 transcripts expressed in
SLE patients and not in healthy donors. Although these
studies involved only a small number of patient samples,
they all show the potential of RNA-seq as a tool to as-
sess and study different rheumatic diseases.

As already discussed, the advantages and applications
of RNA-seq are multifold. To our understanding, the
main challenges of RNA-seq originate from the large
amounts of data generated and involve the computational
complexities associated with data analysis. As RNA-seq is
becoming more affordable for research labs, the only
daunting challenge is to select the most appropriate pro-
grams and tools for a specific RNA-seq application and to
be able to understand and control the algorithmic param-
eters. Aside from these informatics challenges, which are
steadily being overcome as more user-friendly and fast
programs become available, RNA-seq is a particularly ad-
vantageous technology that embraces the complexity of
the transcriptome and provides a mechanism to under-
stand the underlying regulatory code.

Note: This article is part of the series ‘New technologies'. Other articles
in this series can be found at [54].
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