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Abstract

Background: To examine the roles of long noncoding RNAs (lncRNAs) in the regulation of primary Sjögren’s
syndrome (pSS) and reveal the expression profile of lncRNAs in labial salivary glands (LSGs) in pSS patients.

Method: The expression of 63,431 lncRNAs and 39,887 mRNAs were determined in the LSG of four pSS patients
and four healthy controls using microarray experiments. Validation was performed in 30 pSS patients and 16
controls using real-time PCR. LncRNA-mRNA co-expression and gene-pathway networks were constructed using
bioinformatics software.

Result: A total of 1243 lncRNAs (upregulated: 890, downregulated: 353) and 1457 mRNAs (upregulated: 1141,
downregulated: 316) were differentially expressed in the LSGs of pSS patients (fold change >2, P <0.05). Eight of
these lncRNAs were validated using real-time PCR. ENST00000420219.1 (3.13-fold), ENST00000455309.1 (2.51-fold),
n336161 (2.45-fold), NR_002712 (2.41-fold), ENST00000546086.1 (1.94-fold), Lnc-UTS2D-1:1 (1.79-fold), n340599
(1.69-fold), and TCONS_l2_00014794 (1.28-fold) were significantly upregulated in pSS. There were strong correlations
between these lncRNAs and β2 microglobulin, disease course, erythrocyte sedimentation rate (ESR), rheumatoid
factor (RF), IgA, IgM, visual analogue scale (VAS) of parotid swelling and VAS of dry eyes. Computational analyses
revealed that 28 of the differentially expressed (DE) mRNAs were associated with eight DE lncRNAs involved in
chemokine signaling pathways, the nuclear factor-kappa B (NF-κB) signaling pathway, and tumor necrosis factor
(TNF) signaling pathway.

Conclusions: Our study revealed the expression profile of lncRNAs in LSGs of pSS patients. Many novel lncRNA
transcripts that play important roles in the pathogenesis of pSS were dysregulated in pSS. Therefore, this study will
aid in the development of new diagnostic biomarkers and drug therapies.
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Background
Primary Sjögren’s syndrome (pSS) is an autoimmune dis-
ease that is characterized by the dysfunction of exocrine
glands, primarily the salivary and lachrymal glands,
which results in dry mouth and eyes. The extensive infil-
tration of sensitized lymphocytes into target glands leads
to the primary pathological manifestations of pSS. The
etiology of pSS not clear, but previous studies have sug-
gested that hereditary, hormonal, and environmental

factors play crucial roles in the onset and progression of
pSS [1]. Activation of the innate/adaptive immune sys-
tem is the first line of defense against infections and
damaged tissues. However, aberrantly activated inflam-
matory processes underlie autoimmune disease. Persist-
ent perturbations of these inflammatory pathways are
detrimental to the host and eventually result in disease
conditions, including rheumatoid arthritis (RA), cardio-
vascular disease, and cancer [2–4]. Therefore, inflamma-
tory signaling pathways require strict regulation at the
transcriptional and posttranscriptional levels. Recent
studies have demonstrated that noncoding RNAs, espe-
cially microRNAs, play crucial roles in the regulation of
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inflammatory signaling pathways [5, 6]. The roles of long
noncoding RNAs (lncRNAs) as novel regulators of these
pathways have emerged in more recent years. LncRNAs
are a newly discovered class of regulatory molecules that
are not translated into proteins and consist of more than
200 nucleotides. LncRNAs strongly affect a variety of bio-
logical processes in cells and organ systems. Several stud-
ies revealed the strong involvement of lncRNAs in the
regulation of the immune response, including several
pathways of innate immunity [7, 8]. LincRNA-Cox2 is one
lncRNA that both negatively and positively regulates the
expression of many important immune-related genes. This
lncRNA mediates its repressive effects on interferon-
stimulated genes via interactions with hnRNP-A/B and
A2/B1 [9, 10]. Recent studies have also identified THRIL
as a key regulator of tumor necrosis factor alpha (TNF-α)
induction on Toll-like receptor (TLR) 1/2 signaling in hu-
man THP1 macrophages. Knockdown of THRIL down-
regulated the production of TNF-α mRNA [11]. Several
other lncRNAs, such as NEAT [12, 13], lnc-IL7R [14],
PACER [15], lnc-DC [16], IL1β-RBT46 [17] and AS-IL1α
[18], control the innate immune response, immune cell
development, and adaptive immunity. These studies indi-
cate the crucial role of lncRNAs in the normal immune
system. However, it is important to identify whether
lncRNA dysfunction is involved in the pathogenesis of
autoimmune diseases. Increasing evidence suggests that
the dysregulation of lncRNAs plays an important role in
autoimmune diseases, such as systemic lupus erythemato-
sus (SLE), RA, type I diabetes mellitus (T1DM), and mul-
tiple sclerosis (MS) [19–24]. The present study analyzed
the lncRNA expression profiles in labial salivary glands
(LSGs) of pSS patients using lncRNA microarray to inves-
tigate the potential roles of lncRNAs in the pathogenesis
of pSS. The results provide a new direction for the diagno-
sis and therapy of pSS.

Methods
Study subjects
Thirty patients diagnosed with pSS and 16 control subjects
were recruited from the Department of Oral Surgery,
Shanghai Ninth People’s Hospital, School of Medicine,
Shanghai Jiao Tong University. All of the selected pSS pa-
tients fulfilled the American-European consensus group
criteria for pSS. Specimens were collected during labial bi-
opsy. No immunosuppressive treatment was administered
to patients prior to diagnosis. Sixteen control subjects were
diagnosed with labial gland mucocele and underwent
mucocele excision. Normal labial glands adjacent to muco-
cele were collected during surgery. The absence of acute in-
fections or systemic diseases was confirmed in all healthy
donors. All specimens were immediately frozen in liquid ni-
trogen after resection and stored at −80 °C until RNA ex-
traction. The discovery cohort was composed of eight

patients mixed with pSS patients and control subjects
for the screening of 63,431 lncRNA transcripts. The in-
dependent validation cohort consisted of 30 pSS pa-
tients and 16 normal samples. Table 1 summarizes the
detailed demographic, clinical and laboratory character-
istics of the 30 pSS patients. All healthy donors were fe-
males aged 25–65 years old. Consent was obtained from
each participant prior to sample collection. The Ethics
Committee, Faculty of Medicine, Shanghai Jiao Tong
University approved this study.

Microarray
Total RNA was extracted from eight samples (four pSS
and four control subjects) using TRIzol reagent (Life

Table 1 The detailed demographic, clinical, and laboratory
characteristics of 30 pSS patients

Characteristic pSS patient

Sex, no. male/female 0/30

Age, mean ± SD years 47.63 ± 13.50

Dry mouth, VAS. mean ± SD 6.57 ± 2.12

Dry eyes, VAS. mean ± SD 2.90 ± 2.95

Parotid swelling, VAS. mean ± SD 4.00 ± 2.40

Rose bengal score, no. +/− 20/10

Saxon test (g/2 min). mean ± SD 1.44 ± 0.62

Grading of labial salivary gland biopsies, no.

Nonspecific chronic sialadenitis 1

Grade 1 (<50 periductal lymphocytes) 1

Grade 2 (>50 periductal lymphocytes)

Nonsegregated 6

Segregated aggregates 6

Grade 3 (>50 periductal lymphocytes, with GC-like
structures)

16

Ro (SSA), no. +/− 24/6

La (SSB), no. +/− 10/20

Anti-centromere antibodies (ACA), no. +/− 6/24

ESR (mm/hr). mean ± SD 21.77 ± 12.95

RF (IU/ml). mean ± SD 146.21 ± 195.12

IgG (g/L). mean ± SD 19.12 ± 4.10

IgA (g/L). mean ± SD 3.22 ± 0.84

IgE (IU/ml). mean ± SD 78.54 ± 68.92

IgM (g/L). mean ± SD 1.73 ± 0.74

Course of disease (month). mean ± SD 35.53 ± 26.04

CRP (mg/L). mean ± SD 4.46 ± 2.15

C3 (g/L). mean ± SD 1.10 ± 0.19

C4 (g/L). mean ± SD 0.26 ± 0.07

β2 microglobulin(mg/L). mean ± SD 2.80 ± 0.88

pSS primary Sjögren’s syndrome, SD standard deviation, VAS visual analogue
scale, ESR erythrocyte sedimentation rate, RF rheumatoid factor, Ig
immunoglobulin, CRP C-reactive protein, C3 complement 3, C4 complement 4
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Technologies, Carlsbad, CA, USA). The RNeasy Mini Kit
(Qiagen, GmBH, Hilden, Germany) was used to purify the
total RNA according to the manufacturer’s recommenda-
tion. Purified total RNA was quantified using a NanoDrop
1000 (Thermo Fisher Scientific, Waltham, MA, USA).
The assessment of RNA integrity was determined using
RNA LabChip™ kits and an Agilent 2100 bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Only sam-
ples with 2100 RIN ≥7.0 and 28S/18S ≥0.7 were used.
Agilent SurePrint G3 microarray was used to investi-

gate 63,431 lncRNAs and 39,887 mRNAs. Total RNA
was amplified and labeled using a Low Input Quick
Amp Labeling Kit, One-Color (Agilent Technologies,
Santa Clara, CA, US). Labeled cRNA were purified using
an RNeasy mini kit (Qiagen, GmBH, Hilden, Germany).
The microarray hybridization was performed based on
the manufacturer’s standard protocols (Agilent Tech-
nologies, Santa Clara, CA, US). Slides were washed in
staining dishes and scanned. Raw data were normalized
using a Quantile algorithm in Gene Spring Software 11.0
(Agilent Technologies, Santa Clara, CA, US).

LncRNA-mRNA co-expression network
An lncRNA-mRNA co-expression network was built
based on the normalized signal intensity of differen-
tially expressed lncRNAs and mRNAs to explore the
dysregulation of lncRNAs in pSS patients. A co-
expression network of control subjects and pSS pa-
tients was established. Differentially expressed lncRNAs
and mRNAs that met the criteria (P value <0.05, fold
change >2 or <0.5) were selected. Correlations between
lncRNA and lncRNA, lncRNA and mRNA, mRNA and
mRNA were investigated using Pearson’s correlations.
Only strong correlations (P <0.001) were drawn in these
renderings. The importance of a gene in this network is
reflected by degree. A gene with a large degree indicated
that it was at a central position in the network and it
shared closer relationships with more genes. The last step
investigated genes that exhibited different degrees in pSS
patients and control subjects.

Screening of differentially expressed genes for validation
We screened differentially expressed (DE) lncRNAs for
further validation using the following two approaches to
validate the results of microarray experiments in an in-
dependent cohort and investigate the correlations be-
tween gene expression levels and clinical characteristics.
First, genes were evaluated based on the data revealed

by microarray experiments using the following criteria: (a)
the fold change of genes must be greater than fivefold
compared to control subjects; (b) the signal value of the
probes in each sample must be greater than seven; (c) the
signal of the probes in each sample must be significantly
different from the background signal; and (d) genes with

lncRNA-mRNA repeated sequences and without informa-
tion in databases were excluded.
Second, the degree of differentially expressed genes be-

tween pSS patients and control subjects was compared
based on the co-expression network results. The top 30
genes with high different degrees and the qualified re-
quirements for signal values were selected.

Real-time PCR
Total RNA was extracted as described above. cDNA was
synthesized from 0.5 μg RNA using the iScript cDNA syn-
thesis kit (Bio-Rad Laboratories, Hercules, CA, USA).
Real-time PCR was performed using an ABI Power SYBR
Green PCR Master Mix (ABI, Foster City, CA, USA) and
7900 HT Sequence Detection System (ABI, Foster City,
CA, USA). Real-time PCR was performed with a 5-ng
cDNA template using the 2× SYBR Green PCR buffer and
10-μmol PCR primers in a total volume of 10 μl. Reactions
were performed in 384-well PCR microplates. Additional
file 1: Table S1 lists the primer sequences.
The expression of each lncRNA was represented as

fold changes using the △△Ct method to obtain quantita-
tive results. Differences between groups were analyzed
using a two-tailed Mann-Whitney U test or unpaired
t test, based on the homogeneity of variance. Spearman’s
test was used for correlation studies. A value of P <0.05
was considered significant.

Immunohistochemistry
Immunohistochemical staining to detect C-X-C chemo-
kine receptor type 4 (CXCR4), CD19, CD21, Toll-like re-
ceptor 9 (TLR9) and intercellular cell adhesion molecule
1 (ICAM1) was performed on LSG biopsy sections as
described previously [25]. CXCR4 (ab124824, Abcam,
Cambridge, MA, USA), CD3 (ab699, Abcam, Cambridge,
MA, USA), CD19 (ab134114, Abcam, Cambridge, MA,
USA), CD21 (ab75985, Abcam Cambridge, MA, USA),
ICAM1 (ab53013, Abcam, Cambridge, MA, USA), CD20
(ab78237, Abcam, Cambridge, MA, USA), and TLR9
(BA3861-1, Boster Biotechnology, Wuhan, China) anti-
bodies were used in this experiment. Negative control
staining was performed by replacing primary antibodies
with PBS. Positive immunoreactivity appeared as a brown
color. Double staining for CD3 and CD20 was used to
analyze T/B cell segregation using the DouMaxvision™
double-stain system (KIT-9998, Maixin Biotechnology,
Fuzhou, China). A scoring system was used to describe
the results of double staining as described previously [26].
The images of grade 1 to 3 are shown in Additional file 2:
Figure S3.

EBV-encoded RNA (EBER) in situ hybridization
In situ hybridization was performed in LSG of 30 pSS
patients using Epstein-Barr Virus ISH Detection Kit
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(Triplex International Biosciences, Fuzhou, China), ac-
cording to the manufacturer’s protocol. Patients with lym-
phepithelioma were used as positive controls. The images
of EBER-positive cells in representative ectopic lymphoid
structures are shown in Additional file 3: Figure S4.

Bioinformatics analysis
Aberrantly expressed lncRNAs and mRNAs with statis-
tical significance were identified using Volcano Plot filter-
ing. The threshold used to screen up- or downregulated
RNAs was a fold change >2.0 (P <0.05). Hierarchical clus-
tering was performed in Cluster 3.0, and heat maps were
generated in Java Treeview. The DE mRNAs or DE
lncRNAs-related mRNAs were analyzed using pathway
annotation and gene ontology (GO) functional enrich-
ment in the Cytoscape 3.3 software. The gene-pathway
network was also constructed using Cytoscape 3.3.

Results
Overview of aberrantly expressed lncRNAs and mRNAs in
pSS
The expression levels of mRNAs and lncRNAs in four
LSGs of pSS patients and paired control samples were
analyzed using gene expression microarrays. The expres-
sion signatures of lncRNAs and mRNAs were reviewed
using scatter plot and hierarchical clustering analyses.
The scatter plots revealed that many lncRNAs and
mRNAs were differentially expressed between pSS pa-
tients and control subjects (Fig. 1a, b). The heat maps of
DE lncRNAs or mRNAs indicated the high level of con-
cordance in pSS or control samples (Fig. 1c, d). The
above-listed data indicated that changes in lncRNAs and
mRNAs in LSGs were associated with the pathogenesis
of pSS. Of the 63,431 lncRNAs and 39,887 mRNAs in
the microarray, 1243 lncRNAs and 1457 mRNAs were
significantly differentially expressed in the labial glands

Fig. 1 The expression profiling of lncRNA and mRNA in LSGs of pSS patients and healthy controls. a, b Scatter plot comparing global lncRNA or
mRNA gene expression profiles between pSS and control subjects. Green lines and red line indicate twofold differences in either direction in
lncRNA and mRNA expression. c, d Heat map showing hierarchical clustering of lncRNAs or mRNA with expression changes greater than twofold.
Red and green colors represent up- and downregulated genes, respectively. lncRNA long noncoding RNA, SjS Sjögren’s syndrome

Shi et al. Arthritis Research & Therapy  (2016) 18:109 Page 4 of 14



of pSS patients compared to control subjects (fold
change >2, P <0.05). A total of 890 lncRNAs and 1141
mRNAs were upregulated, and 353 lncRNAs and 316
mRNAs were downregulated. Table 2 lists the 20 most
up- and downregulated DE lncRNAs. Table 3 lists the 20
most up- and downregulated DE mRNAs. All of the data
from the microarray trials are stored in the GEO data-
base with accession number GSE76013.

Real-time PCR: lncRNA expression profiles and
correlations with clinical characteristics
Aberrantly expressed lncRNAs were identified in labial
gland tissue samples from 30 pSS patients and 16 control
subjects. The selection of representative lncRNAs for valid-
ation was based on the two approaches described in the
Methods section. Nine lncRNAs were selected: NR_002712,
n341833, lnc-UTS2D-1:1, TCONS_l2_00014794, n336161,
ENST00000420219.1, ENST00000455309.1, n340599, and
ENST00000546086.1. The results demonstrated that
ENST00000420219.1 (3.13-fold), ENST00000455309.1
(2.51-fold), n336161 (2.45-fold), NR_002712 (2.41-fold),
ENST00000546086.1 (1.94-fold), Lnc-UTS2D-1:1 (1.79-
fold), n340599 (1.69-fold), and TCONS_l2_00014794
(1.28-fold) were significantly increased in pSS (Fig. 2).
However, n341833 was not dysregulated in pSS patients.

The next step was an analysis to determine whether any
correlations existed between these DE lncRNA expression
levels and the clinical characteristics. Figures 3a–d and
4a–b show that strong correlations were observed in eight
pairs: (1) disease course with six lncRNA expression levels;
(2) visual analogue scale (VAS) of parotid swelling with
two lncRNAs; (3) VAS of dry eyes with one lncRNA; (4)
β2 microglobulin with six lncRNAs; (5) erythrocyte sedi-
mentation rate (ESR) with three lncRNAs; (6) rheumatoid
factor (RF) with two lncRNAs; (7) immunoglobulin (Ig)A
with two lncRNAs; and (8) IgM with one lncRNA. Four
lncRNAs were significantly upregulated in SSB-positive
patients compared to SSB-negative patients (Fig. 4c–d).
No significant correlation existed between these DE
lncRNAs and dry mouth, IgE, IgG, complement 3 (C3),
complement 4 (C4), C-reactive protein (CRP) and grading
of labial biopsy. Additional file 4: Table S2 shows the de-
tailed correlation analysis results. A multivariate model
was used to identify lncRNAs that correlated inde-
pendently with disease characteristics. Additional file 5:
Table S3 shows the results of this analysis.

Functional prediction of DE mRNAs
GO and pathway analyses of the up- and downregulated
genes in LSGs of pSS patients were performed to further

Table 2 Top 20 significantly differential expressed lncRNAs between pSS patients and control subjects

Upregulated Downregulated

lncRNAs P value Fold change lncRNAs P value Fold change

lnc-UTS2D-1:1 0.001 24.377 NR_026839.1 0.010 −7.135

NR_002712 0.018 20.057 TCONS_l2_00013113 0.007 −6.244

n341833 0.001 16.933 NR_026842.1 0.022 −5.943

lnc-MMP3-1:1 0.023 11.056 TCONS_l2_00004830 0.033 −5.319

lnc-LGALS14-1:2 0.000 9.526 NR_046443.1 0.033 −5.280

NR_034176.1 0.005 8.737 lnc-CYR61-2:1 0.008 −4.783

n333136 0.026 7.420 NR_037839 0.001 −4.760

n336199 0.031 6.893 NR_037839 0.022 −4.747

NR_073198.1 0.012 6.880 n333443 0.031 −4.633

lnc-MAGEA12-2:1 0.013 6.866 NR_026838 0.012 −4.358

lnc-ADAM2-1:1 0.020 6.853 NR_026838.1 0.025 −4.358

n337610 0.005 6.654 TCONS_l2_00019075 0.006 −4.350

n334829 0.007 6.628 ENST00000495382.1 0.014 −4.313

ENST00000577557.1 0.024 6.626 NR_036580 0.028 −4.308

XR_111691 0.010 6.482 lnc-OBP2B-2:1 0.011 −4.294

XR_111691 0.011 6.384 n333418 0.003 −4.256

lnc-KATNAL1-3:14 0.009 6.336 ENST00000508179.1 0.005 −4.180

n336575 0.017 6.215 n334464 0.004 −4.117

ENST00000578280.1 0.013 6.183 TCONS_l2_00010194 0.022 −4.005

lnc-BRD1-4:1 0.002 6.101 lnc-ZNF572-1:15 0.012 −3.962

lncRNA long noncoding RNA, SjS Sjögren’s syndrome
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examine the potential mechanism of pSS. The GO re-
sults indicated that the most significantly enriched cel-
lular components of upregulated mRNAs in LSGs of
pSS were the external side of the plasma membrane, im-
munological synapse, and MHC class II protein complex
(Fig. 5a). The most significantly enriched molecular
functions of upregulated mRNAs were peptide antigen
binding, MHC class II receptor activity, and transmem-
brane signaling receptor activity (Fig. 5a). The most sig-
nificantly enriched biological processes of upregulated
mRNAs were immune response, inflammatory response,
and cytokine-mediated signaling pathway (Fig. 5a). The
most significantly enriched cellular components of
downregulated mRNAs in LSGs of pSS were host cell
nucleus, nucleus, and nucleolus (Fig. 5b). The most sig-
nificantly enriched molecular functions of downregu-
lated mRNAs were heparanase activity, monooxygenase
activity, and mu-type opioid receptor binding (Fig. 5b).
The most significantly enriched biological processes of
downregulated mRNAs were transmembrane transport,
mammary gland alveolus development, and potassium
ion homeostasis (Fig. 5b). DE mRNAs were analyzed in
the Kyoto Encyclopedia of Genes and Genomes (KEGG).

The results revealed that the upregulated mRNAs in
LSGs of pSS were significantly involved in graft-versus-
host disease, cytokine-cytokine receptor interactions,
and cell adhesion molecules (Fig. 5c). The downregu-
lated mRNAs were significantly involved in gastric acid
secretion, mineral absorption, and retinol metabolism
(Fig. 5d).

Relational analyses of lncRNAs and mRNAs
Twenty-eight DE mRNAs from the co-expression net-
work data strongly correlated with the eight validated
lncRNAs (P <0.001, r >0.99). Table 4 shows the detailed
information of these mRNAs. Figure 6 shows that gene-
pathway network graph analyses revealed that the 28 DE
mRNAs, including ICAM1, TLR9, TNF receptor-
associated factor 1 (TRAF1), CXCR4, chemokine (C-C
motif ) ligand 20 (CCL20), and CD19 were likely in-
volved in chemokine signaling pathways, the nuclear
factor-kappa B (NF-Κb) signaling pathway, TNF signal-
ing pathway, African trypanosomiasis, natural killer cell-
mediated cytotoxicity, and Epstein-Barr virus infection
[27–30], which are involved in the pathogenesis of
pSS. Additional file 6: Figures S1 and Additional file 7:
Figure S2 show that the results of immunohistochemistry
in LSGs of pSS patients confirmed the overexpression of
CD19, CXCR4, ICAM1, and TLR9 proteins. These results
indicate the functional roles of DE lncRNAs in the
progress of pSS. Since many of these lncRNA are
supposed to regulate immune functions, the correl-
ation between the eight upregulated lncRNAs and
main histopathological data, such as the infection of
Epstein-Barr virus, B/T cell segregation, and presence/
absence of ectopic lymphoid structures, were ana-
lyzed. The results revealed no significant correlation
exists (Additional file 8: Figure S5).

Discussion
LncRNAs were primarily investigated in genomic im-
printing, cancers, and cell differentiation, but these mol-
ecules are emerging as important regulators of immune
cell differentiation and the activation of innate immun-
ity. However, the identification of lncRNA expression in
autoimmune diseases is largely underexplored. Few
studies reported that lncRNAs played a crucial role in
autoimmune diseases, such as SLE, RA, T1DM and
MS [31–36], but fewer studies have examined the ex-
pression profile of lncRNAs in pSS. The critical role
of lncRNAs in the pathogenesis of pSS was demon-
strated previously [37]. Therefore, differentially expressed
lncRNAs in the LSGs of pSS patients were identified using
microarray experiments.
The results demonstrated that upregulated mRNAs

were far more numerous than downregulated mRNAs in
pSS samples, which indicated the activation of many

Table 3 Top 20 significantly differential expressed mRNAs
between pSS patients and control subjects

Upregulated Downregulated

mRNAs P value Fold change mRNAs P value Fold change

EGFL6 0.018 26.237 ITLN1 0.003 −104.642

SCGB1D2 0.020 17.197 TRH 0.001 −26.423

SCGB2A2 0.033 16.941 C4orf40 0.036 −9.826

CXCL13 0.018 16.911 LCE5A 0.001 −7.139

SCGB1D1 0.019 15.752 CYP2F1 0.013 −6.398

FCRL4 0.010 14.227 FXYD2 0.000 −6.070

MMP12 0.028 11.131 CADPS 0.002 −5.823

IDO1 0.024 9.307 ASTN1 0.038 −5.735

CD1A 0.007 8.942 CABS1 0.022 −5.372

CXCL11 0.018 8.175 GABRG3 0.005 −5.303

KLHDC7B 0.008 8.152 FGF12 0.039 −5.231

CXCL9 0.028 7.876 CSN3 0.008 −4.829

TIMD4 0.001 7.647 DACH2 0.048 −4.709

UTS2D 0.029 7.368 LEFTY1 0.027 −4.709

SLC26A4 0.014 7.037 NA 0.048 −4.652

ZBTB32 0.011 6.793 XLOC_002852 0.011 −4.508

TIMD4 0.004 6.746 NA 0.012 −4.375

EXOC3L4 0.003 6.281 PPP1R17 0.033 −4.332

IFNG 0.018 6.201 ABO 0.012 −4.272

CTLA4 0.011 6.177 SLC35G1 0.024 −4.215

SjS Sjögren’s syndrome
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new biological processes or signaling pathways in patho-
logical conditions. DE mRNAs were further analyzed in
pSS patients using GO term enrichment and pathway
enrichment analyses. The GO results indicated that the
most significantly enriched cellular components of
upregulated mRNAs in LSGs of pSS patients were the
external side of plasma membrane, immunological syn-
apse, and MHC class II protein complex. The most sig-
nificantly enriched molecular functions of upregulated
mRNAs were peptide antigen binding, MHC class II re-
ceptor activity, and transmembrane signaling receptor
activity. These results are consistent with previous stud-
ies that demonstrated aberrantly expressed MHC class II
and costimulation molecules in the epithelial cells of
salivary glands in pSS patients [38, 39]. The abnormal

expression of these molecules on the surface of salivary
gland epithelial cells may favor the presentation of SSA
and SSB epitopes to T cells and lead to autoantibody
production [40]. The immune response, inflammatory
response, and cytokine-mediated signaling pathway were
the most significantly enriched biological processes of
the upregulated mRNAs. The results suggest that an ac-
tive autoimmune inflammatory response occurred in the
epithelial cells of salivary glands in pSS patients. The re-
sults also demonstrated that several cellular compo-
nents, molecular functions, and biological processes
were inhibited. The pathway analysis results suggested
that the upregulated mRNAs in LSGs of pSS patients
were significantly involved in graft-versus-host dis-
eases, cytokine-cytokine receptor interactions, and cell

Fig. 2 The expression level of nine lncRNAs in LSG of pSS patients and control subjects were identified using real-time PCR. We confirmed that
eight lncRNAs were significantly upregulated, except n341833. ENST00000420219.1 (3.13-fold, P <0.0001), ENST00000455309.1(2.51-fold, P <0.0001),
n336161(2.45-fold, P = 0.0028), NR_002712(2.41-fold, P = 0.0005), ENST00000546086.1 (1.94-fold, P = 0.0047), Lnc-UTS2D-1:1(1.79-fold, P = 0.0428),
n340599(1.69-fold, P = 0.0001), and TCONS_l2_00014794(1.28-fold, P = 0.0132) were significantly increased in pSS. pSS primary Sjögren’s syndrome
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adhesion molecules. The results also suggest that defi-
ciencies occurred in the labial gland epithelial cells of
pSS patients and ended with the activation of auto-
immune inflammation and the release of inflamma-
tory cytokines by immune cells.

Nine of the aberrantly expressed lncRNAs, including
NR_002712, n341833, lnc-UTS2D-1:1, TCONS_l2_00014794,
n336161, ENST00000420219.1, ENST00000455309.1,
n340599, and ENST00000546086.1, were further con-
firmed in the 30 pSS patients using real-time PCR.

Fig. 3 Correlation between lncRNAs and clinical characteristics in pSS. a The expression level of ENST00000420219.1, ENST00000455309.1,
n340599, n336161, ENST00000546086.1, and TCONS_l2_00014794 were significantly associated with the course of disease. b The expression level
of ENST00000420219.1, ENST00000455309.1, NR_002712, n340599, ENST00000546086.1, and TCONS_l2_00014794 were strongly associated with β2
microglobulin. c The expression level of ENST00000455309.1, NR_002712, and n336161 were associated with ESR. d The expression levels of
ENST00000455309.1 and ENST00000546086.1 were significantly associated with rheumatoid factor (RF). ESR erythrocyte sedimentation rate
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Eight lncRNAs were significantly upregulated, but n341833
was not upregulated. Recent prospective studies confirmed
that serum β2 microglobulin levels were associated with
the EULAR Sjögren’s syndrome disease activity index
(ESSDAI) and EULAR SS patient-reported index (ESSPRI)
in the pSS patients [41, 42]. Notably, the expression levels
of NR_002712, ENST00000546086.1, TCONS_l2_00014794,
n340599, ENST00000455309.1, and ENST00000420219.1
correlated with the β2 microglobulin levels, which suggest
that the upregulated expression of these lncRNAs was

associated with active disease states. These lncRNAs may
be strongly involved in the progress of pSS, especially
ENST00000455309.1, which significantly correlated with
the disease course, ESR, RF, and IgA expression levels.
These multiple correlations were also observed with other
lncRNAs. The results further confirmed that these
lncRNAs played critical roles in the pathophysiology of
pSS, but further functional studies are needed to examine
the potential mechanisms. The regulatory mechanisms and
functional principles of lncRNAs were elucidated recently.

Fig. 4 Correlation between DE lncRNAs and clinical characteristics in pSS. a The expression level of ENST00000420219.1 and NR_002712 were
significantly correlated with VAS of parotid swelling, and the expression level of n336161 was associated with VAS of dry eyes. b The expression
levels of ENST00000420219.1 and ENST00000455309.1 were significantly correlated with IgA, and the expression level of NR_002712 was
associated with IgM. c The expression levels of ENST00000420219.1, NR_002712, ENST00000546086.1, and TCONS_l2_00014794 were significantly
upregulated in SSB-positive patients compared with SSB-negative patients. Ig immunoglobulin, VAS visual analogue scale
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LncRNAs that regulate the abundance of genomically
neighboring or distal gene products are classified as
cis-regulatory models or trans-regulatory models, re-
spectively [43]. However, lncRNAs achieve regulatory
functions via modularity, the collection of diverse
combinations of proteins, and possible RNA or DNA
interactions. This study investigated the potential
targets of eight DE lncRNAs by using an lncRNA-

mRNA co-expression network. This network revealed
that 28 DE mRNAs were strongly associated with
eight DE lncRNAs. A gene-pathway network of the
eight DE lncRNA-related genes was established to ex-
plore the functional mechanism. The results revealed
a significant involvement of these eight DE lncRNAs
in several important signaling pathways that play cru-
cial roles in the pathogenesis of pSS. However, the

Fig. 5 Biological functions of DE mRNAs (P <0.05, fold changes >2). a The significant molecular function, biological process, and cellular
component of upregulated mRNAs. b The significant molecular function, biological process, and cellular component of downregulated mRNAs.
c Significantly enriched pathways of upregulated mRNAs. d Significantly enriched pathways of downregulated mRNAs
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precise regulatory mechanism of lncRNAs requires
further study. Animal models should be used in fur-
ther research to help elucidate the biological pro-
cesses of lncRNAs in pSS. Another limitation of this
study was the lack of pSS mouse models. LncRNAs
expression profiles should be detected in different
animal models because of the variety of pSS mouse
models.

Conclusions
This study revealed aberrant expression profiles of
lncRNAs in LSGs of pSS patients for the first time. A
total of 1243 lncRNAs and 1457 mRNAs were differen-
tially expressed in the labial glands of pSS patients com-
pared to the control subjects, and eight lncRNAs were
further confirmed using real-time PCR in 30 pSS pa-
tients. Strong correlations between lncRNAs and clinical

Table 4 Detailed information of DE lncRNAs linked DE mRNA

mRNA gene symbol P value Fold change Regulation Correlated lncRNA gene name r value P value

ACY3 0.028 2.221 up n340599 0.9996 0.0004

AGAP2 0.016 2.618 up ENST00000420219.1,
n336161

0.9995
0.9992

0.0005
0.0008

ARHGAP30 0.019 2.377 up n336161,
ENST00000455309.1

0.9993
0.9991

0.0007
0.0009

CCL20 0.013 4.295 up TCONS_l2_00014794 0.9991 0.0009

CCR5 0.003 4.040 up ENST00000455309.1 0.9993 0.0007

CD19 0.033 5.657 up n340599 0.9992 0.0008

CD6 0.002 2.604 up ENST00000420219.1 09990 0.0009

CFP 0.011 2.089 up ENST00000546086.1,
TCONS_l2_00014794

0.9995
0.9996

0.0005
0.0004

CXCR4 0.028 5.527 up ENST00000546086.1,
TCONS_l2_00014794

0.9998
0.9997

0.0002
0.0003

CYTH4 0.015 2.151 up n340599 0.9996 0.0004

GIMAP4 0.004 2.905 up ENST00000455309.1 0.9997 0.0003

GNGT2 0.011 3.857 up ENST00000455309.1,
n336161

0.9991
0.9999

0.0009
0.0001

HCST 0.005 3.011 up ENST00000546086.1,
TCONS_l2_00014794

0.9998
0.9995

0.0002
0.0005

HIST1H2AI 0.033 3.800 up ENST00000455309.1 0.9995 0.0005

ICAM1 0.008 2.385 up ENST00000455309.1
n336161

0.9991
0.9994

0.0009
0.0006

KIF20B 0.007 2.118 up ENST00000455309.1, 0.9992 0.0008

LAPTM5 0.022 3.223 up ENST00000546086.1 0.9997 0.0003

LEF1 0.020 3.743 up TCONS_l2_00014794 0.9999 0.0001

LILRB1 0.003 3.180 up ENST00000420219.1,
ENST00000455309.1,
n336161

0.9994
0.9998
0.9997

0.0006
0.00020.0003

PRKCQ 0.025 2.969 up ENST00000455309.1 0.9994 0.0006

RABGAP1L 0.010 2.149 up n340599 0.9997 0.0003

RAC2 0.006 3.169 up n340599 0.9992 0.0008

RLTPR 0.016 2.094 up ENST00000420219.1,
n336161

0.9994
0.9993

0.0006
0.0007

SUSD3 0.010 2.587 up ENST00000546086.1,
TCONS_l2_00014794

0.9998,
0.9999

0.0002
0.0001

TLR9 0.043 2.029 up n340599 0.9992 0.0008

TRAF1 0.014 2.530 up n340599 0.9998 0.0002

WDFY4 0.014 3.251 up n340599 0.9995 0.0005

ZNF831 0.014 4.663 up ENST00000455309.1 0.9997 0.0003

DE differentially expressed, lncRNA long noncoding RNA
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characteristics were observed. This study will lead to
novel directions in pSS diagnosis and therapy.

Ethics approval and consent to participate
This study was approved by the Ethics Committee,
Faculty of Medicine, Shanghai Jiao Tong University.

Additional files

Additional file 1: Table S1. Primer sequences used in validation of
lncRNAs. (DOCX 14 kb)

Additional file 2: Figure S3. Characterization of the cellular infiltrate
and histomorphologic grading of LSG. (A) Shown are representative
examples of grade 1 (G1; <50 periductal lymphocytes); (B,C) grade 2
(G2; >50 periductal lymphocytes): nonsegregated and segregated
aggregates (NS-G2 and S-G2, respectively); (D,F) grade 3 (G3; >50
periductal lymphocytes, with GC-like structures). (TIF 58923 kb)

Additional file 3: Figure S4. EBER expression in LSG of pSS patients. (A)
Significant number of EBER+ cells in representative ectopic lymphoid
structure-positive LSG tissue. (B) Double staining for CD3 and CD20 in the

same section of LSG tissue. (C) Staining for CD21 in the same section of
LSG tissue. (TIF 53011 kb)

Additional file 4: Table S2. Detailed correlation analysis results. (DOCX 20 kb)

Additional file 5: Table S3. Multivariate model used to identify the
lncRNAs that correlated independently with disease characteristics.
(DOCX 14 kb)

Additional file 6: Figure S1. Immunohistochemistry for CD19 and
ICAM1 in LSG of pSS and healthy control. (A, E) Infiltrating lymphocytes in
LSG of pSS were positively staining for CD19 (200× and 400×
magnification); (B, F) glandular epithelial cells from control were negative
(200× and 400× magnification); (C, G) infiltrating lymphocytes and adjacent
glandular epithelial cells in LSG of pSS were positively staining for ICAM1
(200× and 400× magnification). (D, H) Glandular epithelial cells from control
were negative (200× and 400× magnification). (TIF 28780 kb)

Additional file 7: Figure S2. Immunohistochemistry for TLR9
and CXCR4 in LSG of pSS and healthy controls. (A, E) Infiltrating
lymphocytes in LSG of pSS positively stained for TLR9 (200× and 400×
magnification); (B, F) glandular epithelial cells from control were
negative (200× and 400× magnification); (C, G) infiltrating lymphocytes
and adjacent glandular epithelial cells in LSG of pSS were positively
stained for CXCR4 (200× and 400× magnification). (D, H) Glandular
epithelial cells from control were negative (200× and 400×
magnification). (TIF 28419 kb)

Fig. 6 Gene-pathway network graph of DE lncRNA-related mRNAs from Table 4. Circles and boxes represent DE lncRNAs-related genes and the
corresponding pathways, respectively. The color of the pathway terms is defined by the P value of enrichment
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Additional file 8: Figure S5. Expression level analysis between the
eight upregulated lncRNAs and main histopathological data. (A)
Expression of eight lncRNAs in grade 1 (G1), nonsegregated grade 2
(NS-G2), segregated grade 2 (S-G2), and grade 3 (G3) foci in LSG from
30 patients with pSS. (B) Expression of eight lncRNAs in EBER-positive
and -negative LSG from 30 patients with pSS. (TIF 2332 kb)
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