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Abstract

Individualising biologic disease-modifying anti-
rheumatic drugs (bDMARDs) to maximise outcomes
and deliver safe and cost-effective care is a key goal in
the management of rheumatoid arthritis (RA).
Investigation to identify predictive tools of bDMARD
response is a highly active and prolific area of research. In
addition to clinical phenotyping, cellular and molecular
characterisation of synovial tissue and blood in patients
with RA, using different technologies, can facilitate
predictive testing. This narrative review will summarise
the literature for the available bDMARD classes and focus
on where progress has been made. We wiill also look
ahead and consider the increasing use of ‘omics’
technologies, the potential they hold as well as the
challenges, and what is needed in the future to fully
realise our ambition of personalised bDMARD treatment.
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Background

The management of rheumatoid arthritis (RA) has been
transformed with the advent of biologic disease-modifying
anti-rheumatic drugs (h(DMARDs) targeting key cells and
molecules of disease pathophysiology [1, 2]. However, a
lack of universal response is seen with currently available
therapy [1]. As such, even in this exciting therapeutic era
the vast majority of patients fail to achieve the desired
high-level response (equivalent to low disease activity or
remission), and almost 40% of all patients treated with
bDMARDs do not even experience minimally acceptable
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improvement. This means individual patients are treated
sequentially with different drugs, selected using little
mechanistic rationale; consequently leading to increased
costs, unnecessary toxicity and suboptimal effectiveness
[3]. Furthermore, the varied response pattern reflects the
increasingly recognised concept of RA as a syndro-
me—that is, heterogeneous aetiology and pathophysiology
with many immunological variants and a common clinical
phenotype [4]. The cumulative evidence base highlights
the existence of several pathobiological signatures that
may associate with individual immunopathogenic pa-
tient profiles, and thus a rational specific therapeutic
agent [5-8]. Thus, it is somewhat expected that the
same treatment strategy will not achieve similar
results in every RA patient.

With this in mind, an overarching ambition has
emerged to deliver targeted therapies according to the
individual patient profile and disease endotype. This core
principle of personalised medicine has driven consider-
able efforts in the identification of response predictors,
both clinical and biological.

Of the significant number of studies exploring re-
sponse prediction, this narrative review will summarise
the mainly biological investigations considered to be of
particular relevance and interest, focusing on currently
available bDMARDs. Looking ahead, we will comment
on the emerging role of multi-omics approaches (gen-
omics, transcriptomics, proteomics, metabolomics) as
well as the challenges they pose.

Generic clinical predictors of response

A number of generic clinical predictors of response to most
classes of bDMARD therapy have been reported. Concur-
rent treatment with DMARDs, specifically methotrexate
(MTX), is one of the most significant predictors of response
to bDMARD therapy and all biologics are recommended to
be administered in combination therapy [1, 9, 10]. This
effect has been suggested to be related to modulation of
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bDMARD immunogenicity, through limitation of neutralis-
ing anti-drug antibody development that can lead to
reduced serum drug levels and treatment failure [11]. How-
ever, MTX may also improve response by inhibiting other
more diverse immune pathways in addition to those tar-
geted by a biologic. Current smoking is associated with
worse response to tumour necrosis factor inhibitors (TNFi)
and is the most important modifiable variable [12-16].
Other identified predictors mainly include markers of dis-
ease severity that predict poor therapeutic outcome, thus
not enabling treatment individualisation. Lower disability as
assessed by the health assessment questionnaire (HAQ)
and higher baseline 28-joint disease activity score (DAS28)
is associated with better response to bDMARDs—the latter
when American College of Rheumatology (ACR) response
is considered [9, 10, 14, 17]. Other factors associated with
good response include male sex, younger age, early disease
and lower number of previous bDMARD:s [18, 19].

Biological response predictors across biologic
agents

Serological status

Presence of rheumatoid factor (RF) and anti-citrullinated
protein antibodies (ACPA) is currently the only applic-
able means of treatment stratification at the disease
level. There is grade Ia evidence [20] supporting a clearly
better response for rituximab, an anti-CD20 monoclonal
antibody, in seropositive patients (for RF and/or ACPA),
including a significant effect at the joint damage level
[21]; with this association confirmed in large observa-
tional cohort studies [22, 23]. Antibody status predicted
response best in the TNFi-resistant cohort, while in
therapy-naive patients the predictive effect of antibody
status tended to depend on the presence of clinical
markers of severity of inflammation, indicating the need
to include clinical predictors in biomarker analyses. In
contrast, registry data suggest that TNFi may perform
worse in seropositive patients, particularly in RF-positive
patients [14, 17, 19, 24]. However, this finding has not
been validated in clinical trials and a recent systematic
review and meta-analysis concluded that both RF and
ACPA status were not predictive of response to TNFi
[25]. With abatacept, despite a negative meta-analysis
published in 2013 that did not find an association be-
tween RF and clinical response [23], a very recent study
provided a pooled analysis of nine European registries
including over 2700 patients, reporting that both
ACPA and RF positivity were associated with reduced
likelihood of abatacept discontinuation for ineffective-
ness or any reason [26]. The same meta-analysis from
2013 [23] analysed results from five studies of toci-
lizumab (n =1844) and reported a significantly better
ACR20 response for RF-positive patients (odds ratio
(OR) 1.51, 95% confidence interval (CI) 1.21-1.90, I*
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=0.0%). However, the specific relationship of interleu-
kin (IL)-6 and C-reactive protein (CRP) that informs
ACR and European League Against Rheumatism
(EULAR) response scores is particularly relevant when
evaluating tocilizumab; studies which use measures
that do not include CRP, such as the clinical disease
activity index (CDAI), would overcome such con-
founding factors. A small study with 58 patients
found high RF titres to be associated with CDAI re-
mission at 24 weeks [27]. In three other more recent
studies, however, RF status did not associate with
EULAR response at 24 weeks (n=204) [28] or with
CDALI (1 =102) [29] or CDAI remission (1 =839) [30]
at 52 weeks.

Myeloid-related proteins

A generic biomarker of response that has emerged in re-
cent years is the protein complex of myeloid-related pro-
teins (MRP) 8/14, also known as calprotectin. MRP are
enrolled in the myeloid (i.e. monocyte/macrophage) in-
flammatory component of synovitis and their systemic
levels have been shown to strongly correlate with clinical
(for DAS28 r=0.89, p<0.001) and ultrasound (r = 0.64,
p<0.001) disease activity [31-33]. Moreover, higher
MRP8/14 baseline levels have been associated with
EULAR response to adalimumab (OR 3.14, p = 0.04; area
under the curve (AUC) 0.688), infliximab (OR 7.82, p =
0.006; AUC 0.791) and rituximab (OR 210.21, p = 0.002;
AUC 0.984), after adjustment for baseline DAS28 and
68-joint tender joint count (the only two other signifi-
cant variables on univariate analysis), and a consistent
decrease was seen in this marker, parallel to clinical im-
provement [32, 34]. The same authors recently applied
these results to development of a treatment algorithm
that used a prediction score including MRP8/14 baseline
serum levels and generic clinical variables (baseline
DAS28 and HAQ, RF positivity, drug class (rituximab vs
TNFi) and previous TNFi use) [19]. In 59% of patients a
recommendation on treatment class (TNFi, rituximab,
other drug class) could be made and the predicted
probability of response with this model matched the ob-
served response in the cohort very well, with only 10%
difference between the model and the cohort in patients
who followed recommendations and a clearly larger dif-
ference in those who were treated contrary to the algo-
rithm [19]. It should be noted, however, that this
algorithm was derived and tested in a single cohort of
170 patients and that the other clinical variables also
largely contribute to adequately distinguish therapy-
specific response.

Type | interferons
Type I interferon (IFN) activity has also been associated
with response to biologics in a differential manner.
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However, studies have been modestly sized, with differ-
ent approaches employed to measure IFN activity. Since
there are numerous subtypes of type I IFN, which are
difficult to detect in serum, expression of a selection of
interferon-stimulated genes (ISGs) is often used instead,
although these may not exclusively respond to type I
IFN. Upregulation of a cluster of ISGs on a micro-array
may be referred to as an IFN signature.

Despite the differences in the exact genes measured,
the presence of an IFN signature, or micro-arrays in
whole blood or synovial tissue, as well as raised expres-
sion of three ISGs using quantitative polymerase chain
reaction (qPCR) predicted poor response to rituximab in
three independent studies [35-37]. Interestingly, an
IFN-high profile was associated with increased response
to TNFi in two studies; one measured ISG expression in
neutrophils while another measured serum IFN-I activity
using a reporter cell assay [38, 39]. Studies that used
blood micro-arrays have not yet demonstrated an associ-
ation between baseline IFN signature and clinical re-
sponse [40, 41]. Blood IFN signature and qPCR ISG
expression have been associated with better response to
tocilizumab [42]. In several of these studies, the expres-
sion of ISGs at baseline was associated with inflamma-
tory markers or DAS28. Thus, available evidence
suggests that patients with an IFN signature may have
greater benefit from tocilizumab than rituximab, but due
to variation in assays and the need to adjust for other
clinical characteristics this remains uncertain. In
addition, the role of IFN in RA may be more complex.
IFN-a is predominantly produced by circulating plasma-
cytoid dendritic cells, and is generally associated with
worse outcomes in autoimmune diseases [43]. In
contrast, local tissues including synovial fibroblasts pro-
duce more IFN-. Data from animal [44—46] and human
[47-49] studies suggest IFN-[3 may have more of a regu-
latory role, being associated with lower levels of TNF
and higher levels of transforming growth factor (TGF)
beta, IL-10 and IL-1RA. In systemic lupus erythemato-
sus, all plasma IFN activity was attributable to IFN-a,
while IFN-f also contributed to the IEN profile in RA.

Biological response predictors for specific
biologics

Other biomarkers have been investigated to predict re-
sponse to specific bDMARD classes. Rather than fully
characterising predominant pathogenic processes, they
are often related to the mechanism of action of a given
drug and may estimate the probability of response.

TNF inhibitors
A wide range of genetic, epigenetic and gene expression
studies assessing key players of the inflammatory response
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have emerged recently, raising exciting hypotheses but still
failing to consistently differentiate responders from non-
responders across different TNFi-treated RA cohorts.

Genome-wide association studies

Genome-wide association studies (GWAS) have identi-
fied a number of different loci associated with TNFi re-
sponse in Caucasian and Asian populations, but other
large independent studies have failed to confirm these
associations [5, 6, 50—54]. Moreover, only two loci have
reached genome-wide significance: PDE3A-SLCOICI,
containing genes encoding a phosphodiesterase A and a
member of the anion transporter family, for which the
C>T polymorphism was associated with reduced effi-
cacy to adalimumab, etanercept and infliximab with high
significance (p = 107) [53, 55]; and CD84, encoding
SLAM family member 5, in which the G > A single nu-
cleotide polymorphism (SNP) predicted responsiveness
to etanercept (p= 107%) [56]. The predictive value of
these SNPs has thus far not been confirmed and is insuf-
ficient in selecting individual treatment selection. In-
deed, a more recent study with a sample size five to nine
times larger than previous ones failed to replicate the as-
sociation of PDE3A-SLCO1C1 with response to TNFi
[54]. Other SNPs have been associated with response to
TNFi in hypothesis-driven studies with large numbers of
patients (reviewed in detail elsewhere [5, 6, 50]). These
include conflicting data on G308A SNP at the TNF gene
(308GG genotype linked to better response to TNFi in
two meta-analysis but refuted in another, larger and ro-
bust one [5]); and rs10919563 G >A SNP at the RA
susceptibility-associated gene PTPRC (G allele associ-
ated with good response to TNFi in at least large three
studies but not in another similarly large cohort and
meta-analysis) [57-60]. Such inconsistency and/or only
explaining a small amount of the observed response
mean genetic factors remain insufficient to be applied at
the clinical level. This notion was confirmed in a very re-
cent important study which used collective SNP data
from dozens of research groups and concluded that SNP
information did not add significant value to standard
clinical variables and that the research focus should be
re-centred elsewhere [61].

Transcriptomic studies

Alternative approaches such as gene expression analysis
have thus emerged. Transcriptomics is a high-throughput
technique that studies the whole RNA signature of a given
cell or tissue in a specific time. Despite being more prone
to variation due to other intrinsic or extrinsic factors, it is
very robust and has high discriminatory power even in
small cohorts [50, 62, 63]. Several gene expression signa-
tures associating with response to TNFi have been identi-
fied, but few replicated, and except for the type I IFN
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signature mentioned previously, no other clear signals are
evident. A multiplicity of reasons may explain the incon-
sistencies, including study design (heterogeneous and
small cohorts, different disease stages or time points
considered and the analysis of distinct tissues or even cell
types) and technical/analytic approaches (different tran-
scriptomic platforms, a high false positive rate due to mul-
tiple testing, different computational analysis methods).
Indeed, important cell-type specificities have been re-
ported and can be missed when whole tissue (e.g. blood or
synovium) is tested [62]. Nonetheless, transcriptomics still
has tremendous potential in the field of personalised medi-
cine, with the investigation of synovial tissue, the primary
site of disease, offering particular promise. The advent of
minimally invasive techniques such as ultrasound-guided
synovial needle biopsies (USNB) [64] facilitates necessary
access to the main site of inflammation [62]. At the mo-
ment though, transcriptomics is not yet ready for the
prime time, and more well-designed, uniform, powered
studies are needed in order to replicate results and estab-
lish clear signals that can be applied in clinical practice.

Epigenetics

Epigenetic changes (e.g. DNA methylation) control gene
expression and might influence disease risk, prognosis
and eventually drug response [6, 65]. Epigenetic regulation
of key inflammatory genes (e.g. TNF) could in theory in-
fluence response to TNFi [6, 50]. Several epigenome-wide
studies have been conducted, and are ongoing in the
search for a discriminative DNA methylation signature
that predicts response to TNFi (comprehensively reviewed
in detail elsewhere [6]). Non-coding microRNAs also
modulate gene expression through repression of DNA
translation, and deregulation of a number of them has
been identified in RA, both at the tissue and systemic
levels [66]. A few recent studies have investigated the role
of non-coding microRNAs as potential predictors of re-
sponse to TNFi and identified several microRNAs with
good discriminative ability, but only one (microRNA 23)
was replicated in separate studies [67-69]. Interestingly,
one study reported distinct signatures for different TNFi,
namely etanercept and adalimumab, suggesting that
microRNA regulation may differ according to TNFi type
(monoclonal antibody vs fusion receptor protein) and,
thus, studies grouping different TNFi together can hamper
detection of a predictive signal and the conclusions [68].

Synovial tissue

Different synovitis patterns have been described at the
cellular and molecular levels, defined by clusters of
genes related to the myeloid or lymphoid (B-cell-related)
inflammatory compartments, or even associated with
fibroblast and bone turnover processes (fibroid) [70]. As
such, synovial tissue analysis is likely to be of key
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importance in the field of personalised medicine. The
role of CD68" sub-lining macrophages as (a generic)
marker of response to DMARD:s is well established [71].
Increased myeloid synovial infiltration and higher syn-
ovial expression of TNF and other macrophage-related
inflammatory genes have been associated with response
to infliximab, although only explaining a small part of
response variation [70, 72, 73]. Moreover, a synovium
gene signature closer to the lymphoid inflammatory
pathways (including ectopic lymphoid neogenesis (ELN))
did not associate with response to infliximab [74], and
consistent with this another study reported that a serum
lymphoid synovial signature (low serum levels of soluble
intercellular adhesion molecule 1 (sICAM1)/high serum
levels of CXCL13) was associated with poor response to
adalimumab (ACR50 13%) [70]. These results seem to
suggest that an overall predominance of the TNF path-
way and myeloid infiltration at the tissue level lead to
better response to TNFi. In line with this, baseline syno-
vium lymphoid infiltration with the presence of ELN has
been negatively associated with response to TNFi in a
landmark study with 86 biopsied patients [75], as were
increased synovial fluid IL-6 levels [76]. However, an-
other key study with 97 patients reported contradicting
findings, with synovial ELN being associated with better
response to infliximab [77]. Methodological and tech-
nical reasons in addition to clinical and treatment vari-
ables might explain these differences. Importantly,
adding the presence of synovial lymphoid aggregates to
the prior model with clinical variables and TNF expres-
sion increased the performance of the model from 19 to
29% of variation of response, which is clearly insufficient
to be used as a predictive test in clinical practice. Over-
all, synovial inflammatory pathway analysis bears great
potential and the dissemination of techniques like USNB
may facilitate access to tissue and enable more
hypothesis-driven studies and/or confirm the data so far
available. Currently, tissue-based treatment personalisa-
tion remains elusive.

Serum markers

Peripheral blood and serum have frequently been
employed in the search for biomarkers of response. As
mentioned earlier, the translation of biomarkers that best
characterised lymphoid and myeloid synovial phenotypes
at the gene level (CXCL13 and ICAMI, respectively) into
their serum surrogates was able to differentiate response
to adalimumab (ACR50 response of 42% if sICAM"&Y/
CXCL13"") and tocilizumab (ACR50 of 69% if SICAM1-
low/CXCL13"€M in a different cohort of patients [70].
However, it should be noted that there were no synovial
tissue data available for the patients evaluated for re-
sponse, and in another study that analysed paired synovial
tissue and peripheral blood samples the authors did not
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find a differential gene expression in the blood that
matched the high/low inflammatory profile exhibited at
the tissue level [78].

While pre-treatment TNF blood levels or mRNA ex-
pression have been shown not to correlate with response
to TNFi [76, 79-81], higher circulating TNF bioactivity
assessed through in-vitro induction of TNF-related cyto-
kines (IL-1pB, IL-6) was associated with better treatment
response to TNFi in three small studies [81-83]. Also, a
recent study used in-vitro testing of peripheral blood
monocytes of patients treated with TNFi to identify that
transmembrane TNF crosslinking induced concentra-
tions of soluble TNF receptor 1, soluble IL-1 receptor 1
and IL-10 strongly associated with good EULAR
response (AUC 0.91-1.00) [84]. Consistent with the
hypothesis that predominance of non-TNF pathways
may lead to TNFi resistance, increased IL-17 levels and
Th17 cell frequency were associated with poor response
to TNFi [81, 85].

Considering the importance of TNF in cartilage—bone
turnover and joint destruction, serum biomarkers such
as matrix metalloproteinase 3 (MMP3) have been
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investigated and associated with response to infliximab
[86]. This finding was not confirmed in other studies
assessing a wide variety of bone/cartilage-related
markers as predictors of response to TNFi [87, 88].
Lower levels of cartilage oligomeric matrix protein (re-
lated to cartilage turnover) and receptor activator for
nuclear factor-kB ligand (RANKL) and lower RANK-
L:osteoprotegerin ratio (both associated with bone re-
absorption) have all been associated with better response
to adalimumab or infliximab [89, 90].

Metabolomics The characterisation of metabolites in a
given system has also been employed as a tool to predict
response to TNFi and three recent studies identified base-
line serum/urine metabolite signatures associated with
clinical response to TNFi with good accuracy [91-93].
More studies are needed to confirm these results, which
are nevertheless very encouraging. Finally, Table 1 sum-
marises findings from proteomic studies that used this
technology to identify protein signatures able to predict
response to TNFi with good to excellent accuracy. Again,
few consistent signals have emerged to date.

Table 1 Summary of proteomic studies investigating response to biologic therapy

Biomarker Sample size Treatment Main results Reference
24 autoantibodies and cytokines® 3 independent ETN PPV 58-72% Hueber et al. [150]
cohorts, n=93 NPV 63-78%
7 proteins including acute phase reactants, 2 independent ETN AUC R/NR 0.86-1.0 Obry et al. [151]
proteins of the complement systemb cohorts, n=22/16 PROS and CO7: sens 88.9%,
spec 100%
12 cytokines and chemokines® n=33 ETN MCP1, EGF: good response Fabre et al. [80]
CRP + EGF: good response
(AUC 0.844, sens 87.5%, spec 75%)
14 proteins enriched in apolipoproteins, n=8 IFX NR/R ratio 1.336-5459 Ortea et al. [152]
components of the complement system AUC 0.875-1.0
and acute phase reactants®
6 proteins signalled, 2 identified: apolipoprotein  n =60 IFX AUC for all proteins 0.761-0.846 Trocmé et al. [153]
A and platelet factor 4 Combination: sens 97.1%, spec 97.5%
Apo-A: good response, PF4:
non-response
12 biomarkers assembled into one n=144 IFX vs triple tx*  Rapid radiographic progression lower Hambardzumyan et al.
multi-biomarker disease activity (MBDA) score with IFX if high MBDA [154]
9 proteins differentiated response® n=8 ADA NR/R 142-2.18/042-0.73. Ortea et al. [155]
Independence to IFX results
12 cytokines and chemokines® n=46 RTX Baseline cytokines profiles not related  Fabre et al. [124]

to response

Original table summarising proteomic studies available to date that aimed to investigate response to biologic therapy in rheumatoid arthritis
ADA adalimumab, AUC area under the curve, ETN etanercept, IFX infliximab, NPV negative predictive value, NR non-responder, PPV positive predictive value, R

responder, sens sensitivity, spec specificity, RTX rituximab, tx therapy

2GM-CSF, interleukin (IL)-6, fibromodulin, clusterin, ApoE, H2B/e, clusterin, HSP58, IL-1a, COMP, acetyl-calpastatin, biglycan, osteoglycin, serine protease-11, IL-1B,

eotaxin, IP-10, FGF-2, MCP-1, IL-12p70, fibrinogen, FibA, IL-12p40, IL-15

PCeruloplasmin, complement component C7 (CO7), inter-alpha-trypsin inhibitor heavy chain 1, plasminogen, vitamin K-dependent protein S (PROS), protein

S100A9, zinc-alpha2-glycoprotein

°IL-6, TNF-q, IL-1a, IL-1B, IL-2, IL-8, IFN-y, IL-4, IL-10, monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF), vascular endothelium growth factor
dvitamin D-binding protein splicing variant GC-006, ceruloplasmin, apolipoprotein B-100, inter-alpha-trypsin inhibitor heavy chain H2, thrombospondin-1,
complement C4-B alpha chain, inter-alpha-trypsin inhibitor heavy chain H1, gelsolin, apolipoprotein A-lI, fibronectin isoform 7, complement factor H-related
protein 4, apolipoprotein M, adipocyte plasma membrane-associated protein, mannan-binding lectin serine protease 2

€Tropomyosin alpha-4 chain, Transgelin-2, Cofilin-1, Hemopexin, complement C3, SH3 domain-binding glutamic acid-rich-like 3, transcription factor-like 5 protein,

target of Nesh-SH3, Isoform 2 of Tropomyosin alpha-3 chain

Triple disease-modifying anti-rheumatic therapy: methotrexate, hydroxychloroquine, sulfasalazine



Romaéo et al. Arthritis Research & Therapy (2017) 19:239

Rituximab

B-cell phenotyping

Rituximab depletes CD20-positive B cells. There has
therefore been a focus on enumeration of B-lineage
cells in blood and synovium as predictive biomarkers,
as well as other markers of B-cell function, such as
secreted immunoglobulin and B-cell cytokines. Prior
experience using cell-depleting therapies in haematol-
ogy has demonstrated the value of measuring the
extent of B-cell depletion as a biomarker.

In addition to autoantibodies, markers of B-cell activity
may also predict better clinical response, such as raised
serum IgG, the B-cell cytokine BAFF or the chemokine
CCL19 [94-96]. In contrast, in the synovium, higher num-
bers of CD79a" B cells at baseline predict worse clinical
response [97]. In the blood, three studies have used flow
cytometry to demonstrate that higher numbers of circulat-
ing plasmablasts predict worse clinical response [98—100].
This has been confirmed using a large cohort of patients
pooled from randomised trials using a plasmablast gene
expression signature based on the combination of Ig] and
FCRL5 mRNA expression that predicted non-response to
rituximab [101].

Plasmablasts are a plasma cell precursor differentiated
from activated B cells. They are short-lived in the circu-
lation and are CD20 negative, so may act as a biomarker
of B-cell activity, especially after depletion of CD20-
positive B cells. However, they are not detected in a
CD19 lymphocyte gate, requiring specialised flow cytom-
etry protocols for accurate enumeration after rituximab,
called high-sensitivity flow cytometry.

Complete depletion of plasmablasts after the first infu-
sion, assessed through high-sensitivity flow cytometry,
has been clearly associated with better clinical outcomes,
compared with non-complete depletion [102]. Plasma-
blast levels may also explain the more variable response
to lower dose rituximab: although the rate of complete
depletion was lower with lower dose rituximab, patients
with lower baseline plasmablasts counts could achieve
complete depletion and good EULAR response. More-
over, for patients who failed to deplete, a third extra dose
of rituximab increased complete depletion rates and
this was associated with better clinical response [103].
These data provide a basis for modifying therapy. How-
ever, studies that used different flow cytometric proto-
cols did not reproduce these findings [104, 105].
Another study that used high-sensitivity flow cytometry
reproduced baseline, but not depletion, results [100].

Clinical responders have also been found to have lower
baseline frequency, more profound suppression and de-
layed resurgence of memory B cells [106—-109]. Also, an
increased number of plasma CD95" activated B cells and
class-switched memory B cells at depletion, and a lower
transitional-to-memory B-cell ratio at reconstitution
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were associated with poor response; class-switched
memory B cells accumulated in flaring joints, confirming
the pathogenic role of these cells in RA [110, 111].
Clinical relapse is usually preceded a few months by B-
cell compartment repopulation and memory B cells
seem to be key players in this process [107, 112].
Synovial tissue data underline the variable B-cell re-
sponse to standard-dose rituximab that was demon-
strated in blood. Depletion of synovial B cells is more
variable. This is less clearly related to treatment re-
sponse, although these studies have been very modest in
size [97, 105, 113, 114]. In one synovial study, greater
local B-cell depletion (assessed through CD19 mRNA
expression but not through histology) was seen in
ACR50 responders (but not overall responders) com-
pared with non-responders and was coupled with de-
creased synovial immunoglobulin production [105, 115].
Greater decrease of synovial plasma cells was reported
in good responders (R* = 0.26), correlating with the reduc-
tion in serum ACPA levels [113]. Lymphoid aggregates
have been found to decrease after 16 but not 4 weeks.
However, baseline synovial plasma cells and lymphoid ag-
gregates did not predict treatment outcome and it is
therefore less clear whether the greater normalisation of
these changes in clinical responders is a rituximab-specific
mechanism of response or just another (generic) reflection
of an overall improvement in synovitis [105, 113]. Interest-
ingly, type I IFN has a key role in promoting the differenti-
ation of plasmablasts and plasma cells from B cells, which
may link the negative predictive value of the IEN signature
with these blood and synovial findings [116]. Overall, syn-
ovial cellular markers have provided clues to rituximab’s
mode of action and RA pathogenesis, but have been
limited in associating with clinical outcomes. Large
multicentre tissue-based randomised clinical trials (RCTs)
further investigating the role of synovium B-cell burden in
predicting response to rituximab are ongoing [117].

Transcriptomic studies

Gene expression studies have emerged, building on
evidence from cellular-focused blood and tissue re-
search [62, 63]. The clearest signal comes from the
already mentioned type I IFN signature, negatively as-
sociated with response to rituximab at the whole
blood and peripheral blood mononuclear cell (PBMC)
levels [35, 36, 118]. Besides baseline expression, the
induction of type I IFN response genes 3 months
after rituximab treatment was also associated with
good clinical response at 6 months [118]. An import-
ant study assessed 68 patients from the SMART study
and found a whole-blood transcriptomic signature as-
sociated with 6-month response to rituximab, includ-
ing upregulation of the NF-xB pathway and
downregulation of the IFN pathway, which correctly
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classified treatment response in 92.6% of cases [119].
This was also confirmed at the tissue level, where
patients with a high inflammatory gene score, overex-
pressing macrophage and T-cell-related genes and
under-expressing IFN and remodelling genes,
responded better to rituximab [37]. Also in line with
this, another study found responders to have upregu-
lation of synovium immunoglobulin genes and of
genes involved in antigen processing and MHC class
IT presentation [120].

Investigation into other biomarker candidates is more
limited for rituximab response prediction than for TNFi.
Some markers have been associated with better re-
sponse, including: SNPs of the Fc gamma receptor 3A
(158 V> F, VV genotype) [121], BAFF (871C> T, C allele
carriage) [122] and IL-6 (174G > C, CC genotype) [121]
genes; micro-RNA-125b (increased expression) [123];
and cytokine profile assessed through proteomic analysis
(Table 1) [124].

Abatacept

Abatacept is a soluble fusion protein of the modified Fc
region of human IgG1 and the extracellular domain of
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
which binds to the CD80/CD86 complex, modulating
CD28-mediated T-cell activation [125]. Except for
ACPA/RF positivity (see earlier), there are currently no
consistent biomarkers of response validated in separate
cohorts. However, a few studies have provided some
mechanistic insights into the mode of action of abata-
cept, with modulation of not only T cells but also B-cell
biology observed: abatacept significantly decreases
synovial B-cell infiltration and gene expression of IFN-y,
IL-13, MMP1 and MMP3 (which was greater in re-
sponders) [126]; it leads to reductions of serum immu-
noglobulins and free light chains, ACPA/RF titres and
post-switch memory B cells [127], as well as effector
(Thl, Th2, Th17) and regulatory T cells (Tregs) [128]
and follicular helper T cells, the latter being related to
the inhibition of Syk phosphorylation in B cells seen
with abatacept [129]. Another important study also
found in TNFi inadequate responder (IR) patients that
abatacept restored B-cell proliferation, plasma cell differ-
entiation and modulatory proprieties of regulatory T
cells, which were all impaired before therapy, and this
was related to clinical improvement [130].

The most instructive baseline predictive marker to date
appears to be the blood count of immunosenescence-
associated CD28™ T-cell count. Lower baseline levels of
CD4"CD28" cells (<28/pl) and, especially, CD8"CD28~ T
cells (<87/ul) strongly predicted remission at 6 months
(hazard ratio 3.3 and 4.4, respectively, p <0.001) [131].
CD28™ T cells have functional characteristics of cytotoxic
cells (such as NK cells) and have been proposed to play a
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role in the pathogenesis of RA [132]. Interestingly, in a
more recent study assessing pre-treatment whole blood
gene expression, a NK-cell-related signature was associ-
ated with poor response to abatacept with good accuracy
(AUC 0.768) [133], suggesting a replication of flow
cytometry results for CD28™ T cells as markers of abata-
cept failure. A greater decrease in serum levels of A disin-
tegrin and metalloprotease 17 (ADAM17), a cleaving
enzyme responsible for shedding of TNF and other cyto-
kines, has also been observed in responsive patients [134].

Tocilizumab

Tocilizumab blocks the IL-6 receptor (IL-6R) and it is
not surprising that most prediction studies have focused
on the IL-6 pathway, key to RA pathogenesis. Genetic
polymorphisms have also been studied as biomarkers of
response to tocilizumab. While no IL-6 or IL-6R SNPs
were found to be significantly associated with toci-
lizumab treatment outcomes [135, 136], a recent GWAS
study identified eight loci, none of which were previously
linked with RA, drug response, the IL-6 pathway or
the shared epitope [137]. However, a recent small
study studied the significance of these SNPs and con-
firmed two of them (GALNT18 rs4910008, C>T and
CD69 rs11052877, A > G) as positively associated with
response (C-allele carriers and A-allele
respectively) [138].

Recent genomic studies have tried to look for sys-
temic and local biomarkers of response to IL-6R
blockade. Genome-wide analysis of PBMCs identified
upregulation of three type I IFN response genes (IFI6,
MX2, OASL) and one gene encoding metallothionein-
1G (the promoter of which is upregulated by IL-6) in
tocilizumab good/moderate responders (best AUC of
0.947 with two gene combinations) [42]. Another
study did not mention the IEN signature but identi-
fied increases in the expression of TRAV8-3 (involved
in CD8 T-cell response), EPHA4 and CCDC32 and a
decrease for DHFR (dihydrofolate reductase, associ-
ated with response to MTX) in PBMCs of patients
responding to tocilizumab [139]. These authors also
reported increased IgG glycosylation in association
with response, a finding that lacks confirmation.
Whole blood mRNA expression of IL-6R was also not
associated with response to tocilizumab, confirming
findings for serum levels of this molecule [136]. At a
tissue level, tocilizumab was found to significantly de-
crease lymphoplasmacytic cell infiltrates as a whole
and individual counts of macrophage, T cells and
plasma cells (but only a trend for B cells) as well as
expression of IL-7, CCL2, CXCL13 and CCLS8 [140].
There was no difference in this pattern of change or
baseline histological features according to remission
status at 6 months, but overexpression of genes

carriers,
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involved in Ras protein signal transduction and cell
cycle pathways was seen in responders. Importantly,
tocilizumab seemed to induce molecular changes
similar to rituximab and methotrexate but different to
those seen with adalimumab. In line with this, enrich-
ment of TNF-induced gene transcripts in synovial
samples of early RA patients was associated with poor
response to tocilizumab [141], and in the previously
mentioned study by Dennis et al. [70] a serological
cytokine signature (sICAM1™&"/CXCL13'"Y) that cor-
related with myeloid TNF-rich mechanisms at the
synovial level was negatively associated with the
ACR50 response to tocilizumab (20%), whereas the
opposite profile, surrogate of a lymphoid synovial sig-
nature (sICAM1'°"/CXCL13"¢"), strongly predicted
clinical response to IL-6R blockade (ACR50 69%).

Baseline serum IL-6 (but not IL-6R) levels have been
associated with response to tocilizumab, but with con-
tradicting results [136, 142—144]. Both low [142, 143]
and high [136, 144] IL-6 levels were proposed as
markers of good response. However, even considering
that persistently high IL-6 levels in patients failing other
biologics like rituximab may suggest a predominance of
IL-6-related pathways and a likely better response to
tocilizumab [144], the overall clinical effect of baseline
IL-6 levels is probably limited (especially in TNFi IRs) as
they were ineffective in discriminating responders from
non-responders in a large pool of patients (AUC 0.59)
[136]. The various elements involved in IL-6 signalling,
and the impact of the relative expression of IL-6 ligand,
soluble IL-6R, on classic and trans signalling of IL-6
makes interpretation of singular markers challenging. In-
deed, a recent study assessed 31 cytokines/chemokines/
soluble receptors and found that the combination of
soluble gp130Fc, IL-6, IFN-y-induced protein 10 and
soluble TNF receptor II strongly predicted DAS28 re-
mission after tocilizumab therapy (AUC 0.85/0.89 for
naive/non-naive patients) [143]. Soluble gp130Fc, a nat-
ural antagonist of IL-6/IL-6R, was the most robust posi-
tive predictor of response (AUC 0.74-0.81). Low IL-17A
levels have also been linked with higher remission rates,
but estimation of the effect and replication of this find-
ing are missing [145]. A few cellular markers of response
to tocilizumab have been suggested, including lower
baseline frequency of CD277IgD™ B cells [146] and
greater increase in the proportion of Tregs among CD4"
T cells after treatment start [147].

Summary

bDMARD response biomarker research in RA has
been a trending area for over a decade, but few con-
sistent signals aside from serological status have
emerged for implementation into clinical practice.
Whilst available data may guide treatment decisions

Page 8 of 13

to a degree (perhaps mainly supporting TNFi over
other therapies in a seronegative patient), there are
limitations in being able to refine decisions between
targeted therapies. The IFN signature seems promis-
ing but a number of questions remain unclear. With
several markers mainly reflective of generic markers
of disease severity and of responsiveness to therapy,
there is a need to identify therapy-specific predictive
markers. In addition, consistency in approach is
needed to mitigate against conflicting data driven by
varied patient populations studied, time points evalu-
ated, definition and accuracy of response definition,
tissue/cell populations studied and methods employed.
Finally, whilst the plethora of studies provide insights
into RA pathophysiology and drug response mecha-
nisms, potentially valuable signals are not fully pro-
gressed along the translational pathway, towards
stratified clinical studies that are necessary to deliver
clinical meaningfulness and impact.

Future direction

Medical fields, for example oncology, have pursued re-
sponse signatures more successfully, most prominently
observed in breast cancer, with oestrogen receptor or
HER2 positive biopsy predictive of good response to
tamoxifen or trastuzumab, respectively [62]. Nevertheless,
it should be noted that even in these cases a satisfactory
response is observed in only approximately 50% of pa-
tients, with intra-tumour heterogeneity accounting for the
gap in complete response association [148]. As well as
managing our expectations, these observations underscore
the importance of studying pathogenic mechanisms at the
primary site of disease. Whether a tissue-based biomarker
in systemic inflammatory diseases such as RA is as crucial
compared with tumour biology and is of sole importance,
and whether this is dependent on therapy class, remains
unclear. Evaluation of biology at both the systemic and
local tissue levels is likely to be relevant in heterogeneous
diseases such as RA.

With this in mind, high-throughput omics techniques
(genomics, transcriptomics, proteomics, metabolomics)
are increasingly being employed. A number of challenges
exist, including the risk of more spurious associations
that whilst perhaps statistically significant and biologic-
ally plausible have little or no clinical impact. Integrative
multi-omics approaches aim to overcome this [149],
with, in parallel, improved analytical methods to increase
the detection of accurate response predictors. Moreover,
collaborative initiatives and consortia should help ad-
dress discrepant findings [61], support more uniform ap-
proaches to experimental assays and study designs, and
overcome the limitations of piecemeal studies or the lack
of head-to-head populations to compare biomarkers.
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Conclusions

Individualisation of bDMARD therapy in RA is not yet a
reality, but encouraging data gathered over the last dec-
ade together with the emergence of powerful techniques,
and the continued investment in this area, will hopefully
lead to the identification of novel biomarkers that can
optimise treatment selection in clinical practice and im-
prove patient outcomes. Until then clinicians will have
to follow current treatment strategies, integrating limited
generic predictors with other patient, drug and social/
economic factors when choosing from the available
therapies.
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