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Soluble uric acid increases PDZK1 and
ABCG2 expression in human intestinal cell
lines via the TLR4-NLRP3 inflammasome
and PI3K/Akt signaling pathway
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Abstract

Background: In addition to the kidney, the intestine is one of the most important organs involved in uric acid excretion.
However, the mechanism of urate excretion in the intestine remains unclear. Therefore, the relationship between soluble
uric acid and the gut excretion in human intestinal cells was explored. The relevant signaling molecules were
then also examined.

Methods: HT-29 and Caco-2 cell lines were stimulated with soluble uric acid. Western blotting and gRT-PCR were used
to measure protein and mRNA levels. Subcellular fractionation methods and immunofluorescence were used to quantify
the proteins in different subcellular compartments. Flow cytometry experiments examined the function of ATP-binding
cassette transporter, subfamily G, member 2 (ABCG2). Small interfering RNA transfection was used to assess the interaction
between ABCG2 and PDZ domain-containing 1 (PDZK1).

Results: Soluble uric acid increased the expression of PDZK1 and ABCG2. The stimulation of soluble uric acid also facilitated
the translocation of ABCG2 from the intracellular compartment to the plasma membrane and increased its
transport activity. Moreover, the upregulation of PDZK1 and ABCG2 by soluble uric acid was partially decreased by
either TLR4-NLRP3 inflammasome inhibitors or PI3K/Akt signaling inhibitors. Furthermore, PDZK1 knockdown significantly
inhibited the expression and transport activity of ABCG2 regardless of the activation by soluble uric acid, demonstrating a
pivotal role for PDZK1 in the regulation of ABCG2.

Conclusions: These findings suggest that urate upregulates the expression of PDZK1 and ABCG2 for excretion in intestinal
cells via activating the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway.
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Background

Pathological hyperuricemia is defined as a serum urate
concentration (408 pmol/L) above which monosodium
urate (MSU) crystals form at physiological pH and
temperature [1]. Persistent hyperuricemia is widely con-
sidered the primary risk factor in several gout-associated
diseases, such as gouty arthritis, gouty tophi, and renal
damage [2]. An increasing trend in the prevalence of
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gout and hyperuricemia has been revealed by epidemio-
logical investigations in several western countries [3, 4].
In Italy, the prevalence of hyperuricemia increased from
85.4 per 1000 inhabitants in 2005 to 119.3 per 1000
inhabitants in 2009 [5]. Therefore, it is crucial to explore
the pathophysiological process of hyperuricemia and its
effect on target organs.

Underexcretion is the main reason for hyperuricemia
in patients with gout [6]. Renal excretion accounts for
approximately two-thirds of urate excretion, whereas gut
excretion accounts for the rest [2, 7]. This process is
regulated by a variety of apically and basolaterally
expressed reabsorptive and secretory transporters, some
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of which could act as urate-lowering agents [7]. In the
gut, the secretory transporter ATP-binding cassette
transporter, subfamily G, member 2 (ABCG2) is crucial,
and its reduced functioning leads to extra-renal
underexcretion, resulting in a compensatory increase
in renal urate output [8—11]. Therefore, it is essential
to understand the functional and regulatory mechanisms
of urate transport that could result in the development of
new medications to control urate levels, especially for
patients with chronic renal failure.

PDZ domain-containing 1 (PDZK1) is a scaffold protein
that binds to several uric acid transporters and mediates
their subcellular localization [12—14]. A single-nucleotide
polymorphism, rs12129861, in the PDZK1 gene is associ-
ated with serum uric acid [15, 16]. Shimizu et al. [17]
reported that the expression of ABCG2 in the intestinal
brush-border membranes was reduced in PdzkI-knockout
mice, suggesting that PDZKI1 is significantly associated
with the apical localization of ABCG2.

The clinical features of gout occur as a result of the
inflammatory response to MSU crystals [2]. Accumulat-
ing evidence has demonstrated that MSU crystal-
induced inflammation is a paradigm of innate immunity
in gout [18]. Moreover, this inflammatory response is
initiated when MSU crystals engaged the caspase-1-ac-
tivating NOD-like receptor superfamily pyrin domain-
containing 3 (NLRP3) inflammasome, resulting in the
production of active interleukin-1B and interleukin-18.
[19]. However, hyperuricemia is necessary but not
sufficient for gout. Recent findings suggest that the
presence of elevated soluble serum uric acid may also
exert proinflammatory effects, even in the absence of gout
[20-23]. Soluble uric acid increases NLRP3 inflamma-
some activation in human primary renal proximal tubule
epithelial cells [24—26]. However, little is known concern-
ing the effects and molecular mechanisms of uric acid in
the intestines.

The aim of this article is to explore the relationship
between soluble uric acid and gut excretion as well as
the relevant mechanisms. In this study, HT-29 and
Caco-2 cells were used as well-established models of
human intestinal epithelial cells to examine the human
intestinal transport mechanism. The results indicate that
soluble uric acid increased the expression of PDZK1 and
ABCG2 via the TLR4-NLRP3 inflammasome and
phosphatidylinositol-4, 5-bisphosphate 3/kinase (PI3K)/
protein kinase B (Akt) signaling pathway in HT-29 and
Caco-2 cells. Stimulation of soluble uric acid also
facilitated the translocation of ABCG2 from the intracel-
lular compartment to the plasma membrane and
increased its transport activity. An additional study,
which was carried out to examine the possible inter-
action between PDZKI and ABCG2, indicated that
PDZK1 plays a pivotal role in the regulation of ABCG2.
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Methods

Reagents and antibodies

Uric acid, lipopolysaccharide (LPS; from Escherichia coli
0111:B4), Brilliant Blue G, pyrrolidinedithiocarbamate
(PTDC), and HEPES were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Wortmannin was purchased from
MedChemExpress (Monmouth Junction, NJ, USA).
Acetyl-YVAD-chloromethylketone and TAK242 were
purchased from Calbiochem (Rockland, MA, USA).
Pam3CSK4 was purchased from Tocris (Bristol, UK).
Antibodies against phosphorylated-Akt (p-Akt), Akt
caspase-1 P10, and caspase-1 P20 were obtained from Cell
Signaling Technology (Beverly, MA, USA). Antibodies
against ABCG2, PDZK1, Na/K ATPase, Lamin A/C,
GAPDH, B-actin, TLR2, TLR4, MYD88, P2X7, ASC, and
nuclear factor-kB (NF-kB) were obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Penicillin/strepto-
mycin and TRIzol reagent were purchased from Invitro-
gen Life Technologies (Carlsbad, CA, USA).

Cell culture

HT-29 and Caco-2 human intestinal cell lines were
purchased from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China) and cultured in RPMI
1640 and high-glucose Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen) containing 10% fetal
bovine serum (FBS; Gibco, Adelaide, Australia). Cells
were grown in a humidified incubator containing 5%
COy at 37 °C.

During the experiments, a growth arrest period in
serum-free medium was observed overnight prior to
stimulation. Cells were then treated with uric acid or the
solvent (10 mM NaOH) after the addition of HEPES at a
final concentration of 25 mM. The solution was filtered
through a 0.22-pm pore size filter (Millipore, Shanghai,
China) before use.

Cellular stimulation conditions

The inhibitors were dissolved in DMSO or dd H,O. Cells
were pretreated with the corresponding inhibitors in a
humidified incubator containing 5% CO, at 37 °C before
stimulation with soluble uric acid. The final concentrations
and incubation times were as follows: Brilliant Blue G (50
nM, 6 h), PTDC (100 uM, 2 h), Wortmanning (3 pg/ml, 2
h), acetyl-YVAD-chloromethylketone (20 pM, 2 h),
TAK242 (2 uM, 2 h), Pam3CSK4 (5 pg/ml, 2 h), and
LPS (1 pg/ml, 6 h).

Extraction of subcellular fractions

For total protein extraction, cells were washed with ice-
cold phosphate-buffered saline (PBS) and lysed in radio-
immunoprecipitation assay lysis buffer supplemented with
a proteasome inhibitor (Beyotime, Shanghai, China).
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Nuclear and cytoplasmic extractions were prepared
using an NE-PER Nuclear Cytoplasmic Extraction Re-
agent Kit (Pierce, Rockford, IL, USA) according to the
manufacturer's instructions. Briefly, cells were washed
by suspending the pellet in PBS. Next, ice-cold CER I
was added to the cell pellet and vortexed vigorously on
the highest setting for 15 s. The tube was then incubated
on ice for 10 min. Ice-cold CER II was then added to the
tube and vortexed for 5 s on the highest setting. The
tube was incubated on ice for 1 min and vortexed again.
The tube was centrifuged for 5 min at 16,000 x g, and
the supernatant (cytoplasmic extract) was immediately
transferred to a prechilled tube.

For cell membrane extraction, the Membrane Protein
Extraction Kit (BioVision, Inc., Milpitas, CA, USA) was
used according to the manufacturer’s instructions. In brief,
cells were washed with ice-cold PBS and resuspended in
Homogenization Buffer Mix in an ice-cold Dounce
homogenizer. Cells were homogenized on ice 3050 times
and centrifuged at 700 x g for 10 min at 4 °C. The super-
natant was collected and the pellet discarded. Cells were
then centrifuged at 10,000 x g for 30 min at 4 °C. The pellet
represents the cellular membrane protein, whereas the
supernatant represents the cytosolic fraction. Membrane
proteins were dissolved in 1 M urea.

Western blot analysis

Equal amounts of protein were separated by 8-12%
sodium dodecyl sulfate polyacrylamide gel electrophor-
esis and transferred to a polyvinylidene fluoride
membrane (Millipore). The membrane was blocked in
5% nonfat dry milk for 2 h at room temperature and
incubated overnight at 4 °C with the appropriate primary
antibody: GAPDH (1:1000), ABCG2 (1:100), PDZK1
(1:500), MYD88 (1:1000), TLR2 (1:1000), TLR4 (1:1000),
ASC (1:1000), NLRP3 (1:2000), caspase-1 P20 (1:1000),
caspase-1 P10 (1:2000), P2X7 (1:1000), p-Akt (1:1000),
Akt (1:1000), p-actin (1:1000), NF-kB p65 (1:1000), Na/K
ATPase (1:1000), or Lamin A/C (1:1000). Horseradish
peroxidase-conjugated goat anti-rabbit or goat anti-
mouse IgG (1:5000; Cell Signaling Technology) was
applied as a secondary antibody for 1 h at room
temperature. Membranes were covered with enhanced
chemiluminescence solution (Millipore) and exposed to
film. Signal intensity was measured using a Bio-Rad XRS
chemiluminescence detection system (Bio-Rad, Hercules,
CA, USA).

Immunofluorescence

HT-29 and Caco-2 cells were seeded onto 24-well plates.
After treatment, cells were fixed in 4% paraformaldehyde
for 15 min, washed with PBS, and permeabilized with or
without 0.1% Triton X-100 (Beyotime) for 30 min. After
blocking in 10% goat serum for 60 min, slides were
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incubated with a rabbit ABCG2 antibody (1:40) or a
PDZK1 antibody (1:100) overnight at 4 °C. Samples were
then incubated with Alexa Fluor 594-conjugated goat
anti-mouse IgG antibody (Invitrogen) for 2 h, and nuclei
were stained with 4',6-diamidino-2-phenylindole (DAPI;
Sigma-Aldrich). Samples were observed under a fluores-
cence microscope (Leica, Solms, Germany).

Real-time quantitative polymerase chain reaction

Total RNA was isolated using TRIzol reagent (Invitrogen)
and quantified by measuring the absorbance at 260 nm
(NanoDrop 2000; Thermo Fisher Scientific, Waltham, MA,
USA). Complementary single-stranded DNA was synthe-
sized from total RNA by reverse transcription (PrimerScript
RT Master Mix; TaKaRa, Kyoto, Japan). Each real-time PCR
was performed in a total volume of 20 pl in duplicate using
the SYBR Premix Ex Taq™ Kit (TaKaRa) on an ABI StepO-
nePlus System (Applied Biosystems, Warrington, UK). The
following specific primers were used for amplification:
GAPDH (forward 5'-AACTCCCACTCTTCCACCTTCG-
3" and reverse 5'-TCCACCACCCTGTTGCTGTAG-3'),
PDZK1 (forward 5'-CAGCCTCACATTCTTCTT-3" and
reverse 5 -GGTCACAACTCATTCCTT-3'), and ABCG2
(forward 5'-AATACATCAGCGGATACTA-3" and reverse
5'-AATAAGCCACCATCATAAG-3’). The cycle conditions
were as follows: 95 °C for 30 s followed by 40 cycles at 95 °C
for 5 s and 60 °C for 30 s. Relative gene expression was
analyzed using the 27" method.

Flow cytometry
A detailed protocol for the MDR assay is available in the
e-Fluxx-ID" Green Multidrug Resistance Assay Kit
(ENZO Life Sciences, Inc., Farmingdale, NY, USA)
instruction manual. Briefly, on the day of the assay, cells
were collected, washed with PBS, and incubated with or
without the ABCG2 inhibitor novobiocin in the presence
of e-Fluxx-ID" Green for 30 min at 37 °C. Propidium
iodide was added to cells during the last 5 min of incuba-
tion and analyzed immediately on a flow cytometer (FAC-
SAriaSORP; BD Diagnostics, Franklin Lakes, NJ, USA)
equipped with a blue (488 nm) laser, and the signals were
registered in the FL1/FITC (530/30 filter) channel. Data
analysis was performed using FlowJo 8.8.2 software.

To analyze ABCG2 activity, the multidrug resistance
factor (MAF) value was calculated using the following
formula for each probe:

MAF = 100 x (MFIof novobiocin-treated cells—MFI of untreated cells)

/MFIof novobiocin-treated cells,

where MFI = mean fluorescence intensity.
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Transfection of human intestinal cells with small
interfering RNA

For small interfering RNA (siRNA) transfection, cells
were plated onto six-well plates and cultured in RPMI
1640 or DMEM without FBS and antibiotics overnight
before siRNA knockdown. siRNA transfections were
carried out using Lipofectamine 2000 (Invitrogen)
according to the manufacturer's instructions. Briefly, 10
ul siRNA and 5 pl Lipofectamine 2000 reagent were
combined in a total of 300 pl Opti-MEM I (Gibco,
Invitrogen). Thereafter, 700 pl Opti-MEM I was added
to the mixture, and the mixture was added to each well.
After incubation for 6 h, fresh DMEM or RPMI 1640
containing 5% FBS was added to each well. Cells were
returned to the incubator for an additional 48—72 h. The
negative control siRNA (scrambled-siRNA) (Gene-
Pharma, Shanghai, China) was used to account for
nonsequence-specific effects. The siRNA sequences are
as follows: ABCG2 siRNA sense:5-GGAGGCAAAU-
CUUCGUUAUTT-3" and antisense 5'-AUAACGAA-
GAUUUGCCUCCTT-3"; and PDZK1 siRNA sense 5'-
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Statistical analysis

Statistical analysis was performed using GraphPad Prism
5.0 software (San Diego, CA, USA). All experiments
were performed at least in triplicate, and the data are
presented as the mean + standard error of the mean
(SEM). Statistical significance was determined using
one-way analysis of variance followed by Tukeys mul-
tiple comparison test when comparing more than two
groups. P<0.05 was considered to represent a statisti-
cally significant difference.

Results

Expression of PDZK1 and ABCG2 in human intestinal cells
is mediated by stimulation of soluble uric acid

Human intestinal cells were exposed to various concen-
trations of soluble uric acid (2, 4, 6, or 8 mg/dl) or 10
mM NaOH for 24 h. The mRNA expression of PDZK1
and ABCG?2 increased dramatically after treatment with
6 and 8 mg/dl soluble uric acid. Real-time quantitative
polymerase chain reaction (RT-qPCR) analysis revealed
the increases in PDZK1 and ABCG2 mRNA expression

GAUGGAGACAGAGUUCUUATT-3" and antisense: respectively in both cell lines compared to control cells
5"-UAAGAACUCUGUCUCCAUCTT-3". (Fig. 1a). Meanwhile, PDZK1 and ABCG2 expression
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was significantly increased in soluble uric acid-treated
cells compared to control cells (Fig. 1b). Cells were also
treated with 6 mg/dl soluble uric acid for 2, 6, 12, 24, 36,
or 48 h. The expression of PDZK1 and ABCG2 peaked
at 24 h (P<0.01, compared to control cells) (see
Additional file 1). Accordingly, this effect was prom-
inent at the concentration of 6 mg/dl for 24 h in
both HT-29 and Caco-2 cells, and this was used for
subsequent experiments.

The function of ABCG2 in HT-29 and Caco-2 cells
was examined with e-Fluxx-ID" Green Dye with and
without a specific inhibitor. Tinted histograms revealed
a difference in fluorescence between inhibitor-treated
and untreated samples, indicative of ABCG2 protein
activity (according to the MAF values). The MAF
values revealed weak inhibition on ABCG2 efflux
function in both HT-29 and Caco-2 wild-type cells.
However, after stimulation with soluble uric acid, the
MATF value (32.1) increased significantly, by 70.7%, in
HT-29 cells. In Caco-2 cell lines, ABCG2 activity was
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more than two-fold higher compared to that in wild-
type cells (Fig. 1c).

Soluble uric acid altered the subcellular localization of
PDZK1 and ABCG2 in human intestinal cells

To further understand the subcellular distribution of
PDZK1 and ABCG2 proteins, we performed immuno-
fluorescence on HT-29 and Caco-2 cells. The ABCG2
signals increased significantly in the membrane after
treatment with soluble uric acid. Nevertheless, there
were no obvious changes when cells were treated with
Triton X-100 (Fig. 2a), probably because ABCG2 protein
was present not only in the membrane fractions but also
in the cytoplasm. Subcellular fractionation methods were
also used to quantify the protein amount in each subcel-
lular compartment. The cytoplasmic fraction was
marked by the presence of GAPDH, whereas the mem-
brane fraction contained Na/K ATPase, and the nuclear
fraction was enriched in nuclear lamina protein Lamin
A/C. Western blot analysis demonstrated that soluble
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Fig. 2 Soluble urate altered subcellular localization of PDZK1 and ABCG2 in HT-29 and Caco-2 cells. Cells treated with 6 mg/dl soluble urate or 10 mM
NaOH for 24 h. a Cells fixed with paraformaldehyde and permeabilized with or without Triton X-100 and stained with BXP21 anti-ABCG2 antibody
(red). Nuclei stained with DAPI (blue). Scale bar =50 um. b Immunofluorescence staining using an antibody against PDZK1 (red). Nuclei stained with
DAPI (blue). Scale bar =50 um. ¢ Subcellular distribution of PDZK1 and ABCG2 in HT-29 and Caco-2 cells. Cytoplasmic (Cyto, lanes 1 and 2), nuclear
(Nu, lanes 3 and 4), and membranous (Memb, lanes 5 and 6) extracts prepared from cells and used for western blot analyses. Data are presented as
the mean + SEM. *P<0.05 and **P<0.01, compared to control cells; n = 3. GAPDH used as a cytoplasmic fraction marker; Lamin A/C used as a nuclear
marker; and Na/K ATPase used as a membrane marker. Cytoplasmic fraction normalized to that of GAPDH, whereas membrane fraction normalized to
that of Na/K ATPase. ABCG2 ATP-binding cassette transporter, subfamily G, member 2, DAPI 4'6-diamidino-2-phenylindole, GAPDH glyceraldehyde-3-
phosphate dehydrogenase, PDZK1 PDZ domain containing 1, UA uric acid, HUA high concentrations of uric acid (8mg/dl)
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uric acid upregulated the expression of ABCG2 in the
membrane fraction and downregulated its expression in
the cytoplasm (Fig. 2c). Furthermore, consistent with the
immunofluorescence results, ABCG2 protein was not
observed in the nucleus (Fig. 2a, c). Together, these
findings suggest that soluble uric acid induces the
membrane translocation of ABCG2 in HT-29 and Caco-
2 cells.

Immunofluorescence staining and cell fractionation
studies revealed that PDZK1 protein was present in the
cytoplasm and exhibited increased expression upon
stimulation with soluble uric acid (Fig. 2b, c).

PDZK1 regulated the expression and function of ABCG2
in human intestinal cells
The results reported indicate the simultaneous regula-
tion of PDZK1 and ABCG?2, suggesting their interaction.
To address this hypothesis, siRNAs were used to knock
down PDZK1 and ABCG2 in HT-29 and Caco-2 cells.
Negative control cells were transfected with a scrambled
siRNA. PDZK1 and ABCG2 siRNAs strongly attenuated
the expression of their corresponding transcripts, as de-
termined by western blot and RT-qPCR analyses; the de-
creases in expression were statistically significant (P <
0.01, compared to the controls) (Fig. 3a, b). It is also im-
portant to note that PDZK1 siRNA reduced ABCG2 ex-
pression at both the mRNA and protein levels. In HT-29
and Caco-2 cells, the mRNA expression of ABCG2 was
reduced by approximately 50% after PDZK1 siRNA
transfection (P < 0.01, compared to the control) (Fig. 3a).
After transient transfection of ABCG2 siRNA, the mean
fluorescence intensity value corresponding to inhibitor-
treated cells was lower than that of untreated cells
(Fig. 3d). In such cases, the corresponding MAF values
would be regarded as zero according to the manufac-
turer’s instructions. ABCG2 activity was suppressed by
PDZK1 siRNA compared to negative control cells. As
shown in Figs. 1c and 3d, the MAF values decreased to
21% and 33% in HT-29 and Caco-2 cells, respectively.
Moreover, soluble uric acid failed to increase the
expression of ABCG2 after PDZK1 knockdown. The
decreases in ABCG2 mRNA expression were 40% and
66% in HT-29 and Caco-2 cells respectively. No signifi-
cant differences were observed in PDZK1-knockdown
cells (P>0.05, compared to control cells) (Fig. 3a). A
significant decrease in ABCG2 protein was observed
after PDZK1 siRNA transfection, regardless of the pres-
ence of uric acid (Fig. 3b, c¢). The MAF values of 19.4
and 20.8 increased slightly after treatment with soluble
uric acid in PDZK1-knockdown cells. Compared to the
uric acid-treated group, the MAF values decreased to
39% and 62% respectively (Figs. 1c and 3d). On the other
hand, knockdown of ABCG2 did not affect PDZK1
expression (Fig. 3a, b). Soluble uric acid increased the
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expression of PDZK1 protein after transient transfection
of ABCG2 siRNA relative to soluble uric acid-treated
cells (Fig. 3c). The mRNA level did not differ significantly
from that of the control group (P> 0.05), but was lower
than that of the soluble uric acid-treated group (P < 0.01)
(Fig. 3a).

Soluble uric acid upregulated expression of PDZK1 and
ABCG2 by activating the TLR4/NLRP3/caspase-1
inflammasome

To investigate the molecular mechanism of the upregula-
tion of PDZK1 and ABCG2 by soluble uric acid, expression
of the TLR4/NLRP3/caspase-1 inflammasome was assessed.
Soluble uric acid upregulated expression of the NLRP3
inflammasome, which is comprised of NLRP3, apoptosis-
associated speck-like protein-containing a CRAD (ASC),
and caspase-1, indicating that soluble uric acid leads to the
production of active caspase-1 (Fig. 4a). We also investi-
gated the proteins located upstream of caspase-1 in the in-
flammatory response. Western blot analysis showed no
effect on the expression of Toll-like receptor 2 (TLR2) or
P2X7, but increases in TLR4 and myeloid differentiation
primary response 88 (MYD88) were observed after treat-
ment with soluble uric acid (Fig. 4a, b).

Next, cells were pretreated with the corresponding in-
hibitors before stimulation. PDZK1 and ABCG2 expres-
sion was quantified by RT-qPCR and western blot
analyses. Treatment with the caspase-1 inhibitor acetyl-
YVAD-chloromethylketone (Ac-YVAD-CMK, 20 uM)
inhibited the increased expression of PDZK1 and ABCG2
induced by soluble uric acid (Fig. 44, c), whereas the P2X7
inhibitor Brilliant Blue G (50 nM) did not (Fig. 4b, c).
Furthermore, the TLR1/2 ligand Pam3CSK4 (5 pg/ml)
inhibited the expression of caspase-1, as well as PDZK1
and ABCG2, indicating that active caspase-1 is relevant in
the upregulation of PDZK1 and ABCG?2 (Fig. 4a, c). Treat-
ment with TAK-242 (2 pM), a small-molecule specific
inhibitor of TLR4 signaling, suppressed the soluble uric
acid-induced expression of NLRP3, ASC, and caspase-1.
Inhibitory effects of PDZK1 and ABCG2 were also
observed (Fig. 44, c). To further explore whether the sol-
uble uric acid-induced increases in PDZK1 and ABCG2
were involved in the TLR4/NLRP3/caspase-1 inflamma-
some, cells were treated with LPS (1 pg/ml), a potent
inducer of the inflammatory response mediated by TLR4.
The expression of PDZK1 and ABCG2, as well as of the
proteins involved in the TLR4/NLRP3/caspase-1 inflam-
masome, increased dramatically compared to the control
(Fig. 4a, c), suggesting a key role for TLR4.

The soluble uric acid-induced increases in PDZK1 and
ABCG2 are partially dependent on PI3K/Akt signaling
Next, we explored whether the soluble uric acid-induced
increases in PDZK1 and ABCG2 were associated with the
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NE-«kB or PI3K/Akt signaling pathway. As treatment with  investigate whether p65 translocated from the cytoplasm
soluble uric acid did not modulate the total protein of NF-  to the nucleus. Soluble uric acid did not activate the NF-
KB p65 (Fig. 5a, b), we used subcellular fractionation to kB signaling pathway by classic nuclear translocation of
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242 (2 uM), or DMSO-Control for 2 h or with P2X7 inhibitor Brilliant Blue G (50 nM) for 6 h. Cells then incubated with 6 mg/dl soluble urate or 10 mM
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PDZK1, pro-caspase-1, active caspase-1 (p10), NLRP3, TLR2, TLR4, MYD88, and P2X7 measured by western blot analysis. Protein expression normalized

uric acid

to that of GAPDH. ¢ Relative mRNA levels of PDZK1 and ABCG2 determined by RT-qPCR. Data presented as mean + SEM. *P < 0.05 and **P < 0.01,
compared to control cells; n = 3. Ac-YVAD-CMK acetyl-YVAD-chloromethylketone, ABCG2 ATP-binding cassette transporter, subfamily G, member 2,
ASC apoptosis-associated speck-like protein-containing a CRAD, DMSO dimethylsulfoxide, GAPDH glyceraldehyde-3-phosphate dehydrogenase, LPS
lipopolysaccharide, NLRP3 NOD-like receptor superfamily, pyrin domain containing 3, PDZK1 PDZ domain containing 1, TLR Toll-like receptor, UA

the p65 subunit (Fig. 5c¢). Meanwhile, the soluble uric
acid-induced increases in PDZK1 and ABCG2 expression
were not suppressed by the NF-«B inhibitor, pyrrolidine-
dithiocarbamate (PTDC, 100 uM) (Fig. 5a, b).

Soluble uric acid activated Akt by phosphorylating
Ser473 and Thr450 on in Caco-2 cells and Ser473 in
HT-29 cells (Fig. 5d). Moreover, this phosphorylation of
Akt was determined to be PI3K-dependent via inhibition
with Wortmannin (2 pg/ml). Conversely, inhibition of
PI3K by Wortmannin partially reduced the increased
expression of PDZK1 and ABCG2 at both the mRNA
and protein levels (Fig. 5d, e), suggesting that PI3K/Akt
signaling may participate in the soluble uric acid-
induced effects.

Discussion
A previous study demonstrated that soluble uric acid
may act as a proinflammatory agent, independent of its

precipitated form in MSU crystals [23], providing mech-
anistic insight into the immunomodulatory properties of
soluble uric acid that could be attributed to feedback
regulation of urate transporters. Although researchers
are becoming increasingly aware that decreased extra-
renal urate excretion caused by ABCG2 dysfunction is a
common mechanism of hyperuricemia [8, 11, 27], the
effect of soluble uric acid on urate excretion is not
completely understood. In this study, we show a relevant
link between soluble uric acid and the gut excretion (Fig.
6). And for the first time, we show a mechanism for the
upregulation and transport activities of gut urate
excretion (Fig. 6).

HT-29 and Caco-2 cells, which are well-established
models of human intestinal epithelial cells, were used to
examine the human intestinal transport mechanism.
ABCG?2, a high-capacity urate exporter, facilitates uric acid
secretion in the intestine rather than the proximal tubule
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of the kidney [8]. These experiments revealed that soluble
uric acid could also attribute to a feedback regulation of
the urate transporters in human intestinal cell lines.
Stimulation of soluble uric acid appears to facilitate
the translocation of ABCG2 from the intracellular com-
partment to the plasma membrane, where it mediates
renal urate secretion. A more robust transport assay (i.e.,

using membrane vesicles from HEK293 cells expressing
ABCQG2) verified its role as a high-capacity urate trans-
porter [28]. Cycling of membrane transporters between
the plasma membrane and intracellular sites may serve
as a general regulatory paradigm for the expression and
activity of transporters at the cell surface [29]. Utilizing
this mechanism, the plasma membrane permeability for
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Fig. 6 TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway modulated expression of PDZK1 and ABCG2 stimulated by soluble uric acid in human
intestinal cells. Soluble uric acid interacted with TLR2 or TLR4, initiating the formation of caspase-1 by recruiting the NLRP3 inflammasome, which is
comprised of NLRP3, ASC, and pro-caspase-1, and activated the PI3K/Akt signaling pathway by phosphorylating Ser473 and Thr450 on Akt. Activation of
caspase-1 and Akt increased the expression of PDZK1, which upregulated the expression of ABCG2. ABCG2 ATP-binding cassette transporter, subfamily G,
member 2, ASC apoptosis-associated speck-like protein-containing a CRAD, LPS lipopolysaccharide, NLRP3 NOD-like receptor superfamily, pyrin domain
containing 3, PDZK1 PDZ domain containing 1, PI3K/Akt phosphatidylinositol-4, 5-bisphosphate 3-kinase/protein kinase B, TLR Toll-like receptor, UA

soluble uric acid

certain substances can be rapidly changed to allow cells
to respond to varying physiologic conditions [29].
PDZK1 binds to several urate transporters at its PDZ
domain, and well-characterized PDZ domain-containing
proteins regulate the trafficking and activity of multiple
transport proteins in the proximal tubule [13]. In
addition to ABCG2, these transport proteins include
urate transporter 1 (URAT1/SLC22A12) [30], organic
anion transporter 10 (OAT10/SLC22A13) [31], organic
anion transporter 4 (OAT4/SLC22A11) [32], and others
[15]. Shimizu et al. [17] reported that PDZK1 is a func-
tional regulator and directly interacts with ABCG2 at
the protein level. However, there is no evidence that the
expression of ABCG2 is affected by the genetic depletion
of PDZK1. The present study suggests that this regula-
tion occurs at the transcriptional level in human intes-
tinal cells. Moreover, soluble uric acid failed to increase
the expression and function of ABCG2 after knockdown
of PDZK1, indicating that increased expression of
ABCG2 mediated by uric acid is dependent on PDZKI.
Thus far, major studies investigating the proinflamma-
tory effects of uric acid have focused on MSU crystal-
induced inflammation and immunity-related components
[17, 22]. Since uric acid was first considered a signal
sensed by innate immunity (including TLR4 activation
and NLRP3 inflammasome in gouty arthritis) [25, 26, 33],
the role of uric acid metabolism in immune activation and
inflammation has become the current direction and
hotspot concerning gout. Previous studies examining the

role of soluble uric acid have mainly focused on the kidney
(both renal tubules [34] and glomerular cells [26]). In the
current study, we determined that soluble uric acid
activates the TLR4-dependent NLRP3 inflammasome in
human intestinal cells. Moreover, the NLRP3 inflamma-
some plays an important role in the regulation of PDZK1
and ABCG2. However, previous studies have demon-
strated decreased expression of PDZK1 in both a mouse
model of chronic colitis [35] and in humans with
inflammatory bowel disease [36], also suggesting that the
regulation of inflammatory mediators is the probable
mechanism of PDZK1 expression.

Although increasing evidence has demonstrated that
TLRs and MyD88-dependent NF-kB signaling pathways
are both involved in MSU crystal-mediated gouty
arthritis [19, 37], soluble uric acid was revealed to have
no effect on the NF-«B signaling pathway in this study.

Canonical TLR signaling by parallel pathways also
involves PI3K/Akt in chondrocytes stimulated with MSU
and calcium pyrophosphate dehydrate crystals [19, 38].
Akt, a serine/threonine kinase, is critical for the
mediation of cell signaling initiated by growth factors,
cytokines, and other cellular stimuli [39]. Inhibition of
the PI3K/Akt signaling pathway was recently shown to
modulate ABCG2-mediated drug transport via the
translocation of ABCG2 from the plasma membrane to
intracellular compartments in different cell systems,
including side population cells in the bone marrow [40],
glioma-derived stem-like cells [41], and ABCG2-
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overexpressing extracellular vesicles derived from MCEF-
7 breast cancer cells [42]. Our findings showed that
soluble uric acid activated PI3K/Akt signaling via the
phosphorylation of Ser473 and Thr450 on Akt, and its
effects on PDZK1 and ABCG2 were modified by the
PI3K inhibitor, Wortmannin.

There were several limitations to this study. First, it is
possible that the TLR4/NLRP3 inflammasome and the
PI3K/Akt signaling pathway interact in response to
soluble uric acid. Second, it should be noted that any
other mechanisms involved in the inflammatory effects
of soluble uric acid cannot be excluded, and this merits
further investigation. More importantly, although dem-
onstrated in vitro, these findings should be confirmed in
primary intestine cells, as well as in animal models for
translational relevance.

Conclusions

This study set out to investigate the functional and regu-
latory mechanisms of gut excretion. We show a relevant
link between soluble uric acid and the gut excretion. We
also show a mechanism for the upregulation of PDZK1
and ABCG2 via the TLR4-NLRP3 inflammasome and
PI3K/Akt signaling pathway. Moreover, PDZK1 plays a
pivotal role in the regulation of ABCG2. This research
will serve as a base for future studies and provide in-
sights for understanding mechanisms of hyperuricemia.
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times. Cells treated with 6 mg/dl soluble uric acid for 2, 6, 12, 24, 36, or
48 h. (A) Relative mRNA levels of PDZK1 and ABCG2 determined by
RT-gqPCR. Data presented as mean + standard error of the mean (SEM).
*P <005 and **P < 0.01, compared to control cells; n = 3. (B) Representative
western blot assays of PDZK1 and ABCG2 (JPG 435 kb)
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