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Abstract

Background: Metformin could activate adenosine monophosphate-activated protein kinase (AMPK) which was
postulated as a potential therapeutic target for osteoarthritis. This study aimed to examine the effects of metformin
on cartilage and pain in osteoarthritis mouse model.

Methods: Eighty 10-week-old male C57BL/6 mice were randomized to 6 groups: non-operation, sham-operation,
destabilization of the medial meniscus (DMM)-operation with intragastric saline/metformin, and DMM-operation
with intraarticular saline/metformin. Articular cartilage degeneration was examined by scanning electron
microscopy (SEM) and graded using the scoring system recommended by Osteoarthritis Research Society
International (OARSI). Mechanical withdrawal threshold and hind paw weight distribution were measured to assess
the pain-related behavior. Cell Counting Kit-8 assay, quantificational real-time polymerase chain reaction, and
western blot analysis were conducted to examine the anabolic and anti-catabolic effect of metformin and the role
of AMPK in mediating its effects on interleukin-1β stimulated primary mice chondrocytes.

Results: Compared with mice receiving intragastric and intraarticular saline, mice in both intragastric and
intraarticular metformin displayed attenuated articular cartilage degeneration, indicated by less cartilage damage
under SEM and significantly lower OARSI scores. A higher paw withdrawal threshold and a decreased weight-
bearing asymmetry were observed in the intragastric and intraarticular metformin mice compared with their
corresponding saline groups in DMM model of osteoarthritis. In vitro experiments showed that metformin not only
decreased the level of matrix metalloproteinase 13, but also elevated type II collagen production through activating
AMPK pathway.

Conclusions: Metformin attenuates osteoarthritis structural worsening and modulates pain, suggesting its potential
for osteoarthritis prevention or treatment.
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Background
Osteoarthritis (OA) is a disease characterized by articular
cartilage degeneration and joint pain [1]. To date, there is
no effective and safe treatment available that can halt OA
progression [1]. Studies have shown that impaired mito-
chondrial biogenesis and function in articular chondrocytes

were linked to OA [2–5], and activation of adenosine
monophosphate-activated protein kinase (AMPK), a crucial
cellular energy sensor [6], in chondrocytes promoted mito-
chondrial biogenesis and improved mitochondrial function
in OA chondrocytes [7]. In vivo studies also reported that
using non-selective AMPK activators such as berberine
promoted both anti-catabolic and anti-apoptotic effects [8],
whereas alpha1 subunit of AMPK (AMPKα1) knockout
stimulated OA [9–11]. In addition, AMPK activation de-
creased the intensity of chronic pain by reducing the excit-
ability of dorsal root ganglion neurons in inflammatory,
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post-surgical and neuropathic rodent model [12]. Thus,
AMPK has been postulated as a potential therapeutic target
for OA therapy [13–15].
The biguanide metformin has been used as a glucose-

lowering medication for more than 60 years [16]. More-
over, increasing in vitro and in vivo evidence showed
that metformin can delay aging and prolong lifespan [17,
18]. It has been reported that metformin acts via inter-
ference with mitochondrial respiratory complex I leading
to a reduction in adenosine triphosphate (ATP) produc-
tion [19], thereby activating AMPK [20]. In addition,
metformin could activate AMPK via an adenine
nucleotide-independent mechanism by stimulating phos-
phorylation of the Thr-172 on the alpha subunit of
AMPK (AMPKα) [21]. However, to our knowledge, no
in vivo study has been conducted to assess whether met-
formin could suppress OA progression and OA pain. To
fill this knowledge gap, we examined the effect of intra-
gastric and intraarticular metformin in an destabilization
of the medial meniscus (DMM) model of OA in mice,
known to cause destabilization of the joint which even-
tually leads to degeneration and pain of the joint, and in-
vestigated whether the anabolic and anti-catabolic
effects of metformin on chondrocytes were mediated by
the activation of AMPK.

Methods
Animals and experimental design
All experiments in this study were approved by the
Committee on the Ethics of Animal Experiments of
Xiangya Hospital, Central South University and carried
out in strict accordance with the approved guidelines for
the care and use of laboratory animals.
Eighty, 10-week-old, male C57BL/6 mice (mean

weight: 27.3 g) were randomly assigned into 6 groups as
the following:

� Non-operation group: no special treatment without
operation.

� Sham-operation group: no special treatment with
sham operation.

� Intragastric saline (IGS) group: normal saline (10 ml/
kg) was administered intragastrically 3 days after the
DMM surgery; once daily for 8 weeks.

� Intragastric metformin (IGM) group: metformin
(200 mg/kg) was given 3 days after the DMM
surgery; once daily for 8 weeks.

� Intraarticular saline (IAS) group: normal saline (1
ml/kg) was injected into the knee joint cavity 3 days
after the DMM surgery; twice a week for 8 weeks.

� Intraarticular metformin (IAM) group: metformin
(0.1 mmol/kg) was injected into the knee joint cavity
3 days after the DMM surgery; twice a week for
8 weeks.

The animals were housed in groups (four to five per
cage) under controlled temperature on a 12-h light/dark
cycle. Food and water were provided ad libitum.

OA induction
After 1 week of acclimation, OA was induced by DMM
as previously described [22]. Briefly, mice were anesthe-
tized with intraperitoneal injection with 4% chloral hy-
drate (10 ml/kg body weight), and after being shaved and
disinfected, the right knee joint was exposed through a
medial parapatellar approach. The patella was dislocated
laterally, and the knee was placed in full flexion followed
by transection of anterior medial meniscotibial ligament
with a microsurgical knife. Complete disruption of the
ligament was confirmed visually by manually displacing
the medial meniscus with fine forceps. The joint cavity
was washed with normal saline solution. The articular
capsule sutured with 6–0 absorbable PGA sutures, and
the skin closed with 5–0 medical silk braided sutures.
Sham operation was performed on the right knee of a

separate group of mice. It consisted of a skin incision
and medial capsulotomy only, followed by capsule and
skin closure as described above. Eleven mice died before
the intervention ended. Among them, 3 mice died due
to severe injury caused by fighting after DMM-operation
(before intervention); 4 injured mice also caused by
fighting were removed with euthanasia to prevent pain
or stress (before intervention); 2 mice died of anesthetic
accident (before intervention); and the rest two mice
died with unknown reason after intervention (one in
IGM group and the other in IAS group). At 8 weeks
post-DMM surgery or sham operation, the remaining
mice were euthanized with cervical dislocation after iso-
flurane anesthesia. Thirteen mice in non-operation
group, 12 mice in sham-operation group, 11 mice in IGS
group, 10 mice in IGM group, 12 mice in IAS group,
and 11 mice in IAM group were included for further
analysis.

Scanning electron microscopy
Scanning electron microscopy (SEM) was performed to
evaluate the surface ultrastructural characteristics of car-
tilage. After the mice were killed under anesthesia, the
knee joints were isolated with scalpels and dissecting
scissors and washed in 0.1M phosphate buffer. Then the
joints were fixed in 2.5% glutaraldehyde for 24 h and a
second fixation step was performed with 1% osmic acid
for 2 h. The specimens were washed in double-distilled
water and dehydrated in a graded series of ethanol, then
transferred into isoamyl acetate and dried with a critical
point dryer (Hitachi High Technologies, Tokyo, Japan).
The dried specimens were mounted on stages, coated
with platinum/palladium (EiKO IB-5, Shawnee, USA)
and observed using a HITACHI S-3400 N electron
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microscope (Hitachi High Technologies, Tokyo, Japan).
We observed the alterations of the cartilage surface in
the tibia regions.

Histological analysis and OA scoring
Each dissected knee was fixed in 4% paraformaldehyde
for over 24 h and decalcified in 15% EDTA, which was
changed every 5 days for 20 days. The decalcified knee
was dehydrated in a graded series of ethanol and embed-
ded in paraffin (HistoCore Arcadia H, Leica, Nussloch,
Germany). Serial frontal knee sections of the exact 5 μm
thickness were obtained by using a Leica RM2255
microtome (Nussloch, Germany) across the entire knee
joint. Then, the slices were stained with Safranin O/Fast
Green to evaluate the entire articular cartilage of the
knee. All images were taken using the same settings on a
Nikon Eclipse Ti-S microscope (Melville, USA). Semi-
quantitative histopathological scoring system recom-
mended by Osteoarthritis Research Society International
(OARSI) was performed for grading mouse cartilage de-
generation (on a scale of 0–6) [23]. The severity of car-
tilage destruction was expressed as an average score of
the three highest scores in all slides. The images were
blinded-scored by two experienced scorers. If there was
a disagreement on the score of cartilage destruction, the
reading was adjudicated by a panel of three readers in-
cluding the two who read the images. A consensus read-
ing was reached when at least two of the three readers
agreed.

Pain-related behavior assessment
Mechanical allodynia and hind paw weight distribution
were performed to assess pain-related behavior once a
week from on day 0 (pre-operation) to day 56 post-
surgery.
Mechanical allodynia was measured using an elec-

tronic von Frey anesthesiometer (IITC, Woodland Hills,
CA, USA). Briefly, the plantar surface of the hind paw
was stimulated with ascending force intensities of von
Frey filaments. A brisk lifting of the foot was recorded as
a positive response, and the number of positive re-
sponses for each stimulus was automatically recorded by
the instrument. For each mouse, this test was performed
three times with a time interval of 10 min between two
adjacent stimuli. The mean value of the three readings
was calculated as the final threshold value [24, 25].
Changes in hind paw weight distribution between the

right (osteoarthritic) and left (control) limbs were mea-
sured as an index of joint discomfort in the osteoarth-
ritic knee as previously described [26]. An incapacitance
meter tester (IITC, Woodland Hills, CA, USA) was
employed to evaluate hind paw weight distribution. Mice
were placed in an angled plexiglass chamber positioned
so that each hind paw rested on a separate force plate.

The force exerted by each hind limb (measured in
grams) is averaged over a 5-s period. Each data point is
the mean of three, 5-s readings. The change in hind paw
weight distribution was calculated by determining the
difference in the amount of weight (g) between the left
and right limbs.
To obtain consistent results, animals were allowed to

adapt to the grid environment for 30 min. All behavioral
tests were performed by the same technician who was
blinded to the study groups and identification of animals
in order to avoid subjective differences in interpretation,
which could occur with different observers.

Culture of articular chondrocytes and cartilage explants
To obtain mouse primary chondrocytes, we harvested
the knee joints from the femoral condyles and tibial plat-
eaus of postnatal day 3–4 C57BL/6 mice, and digested
with 0.1% collagenase (Biosharp) overnight, as described
previously [27]. A 2-mm biopsy punch was used to har-
vest macroscopically intact human cartilage explants
from femoral condyles of total knee arthroplasty patients
as described elsewhere [28]. Written informed consent
was obtained from all participants.

Treatments of chondrocytes and cartilage explants with
metformin and AMPK inhibitor
Chondrocytes and cartilage explants were grown in cul-
ture medium with 10 ng/ml recombinant interleukin-1β
(IL-1β) (R&D Systems, USA) and metformin (1, 10, and
20mM, Sigma-Aldrich, USA). Chondrocytes and cartil-
age explants were also cultured in the presence of 10 ng/
ml recombinant IL-1β alone. A control sample of chon-
drocytes and cartilage explants cultured in the absence
of metformin and IL-1β was also evaluated. Finally, the
effect of the addition of metformin was evaluated in the
presence of 10 mM metformin and IL-1β samples, with
or without dorsomorphin (10 uM, Sigma-Aldrich, USA),
which is an AMPK inhibitor. Dimethyl sulfoxide
(DMSO) was used as a vehicle of dorsomorphin. The
chondrocytes in each group were respectively treated for
24 h by the corresponding intervention methods, then
RNA and protein extraction were performed and the
medium was collected. The cartilage explants were
treated for 48 h. The medium was collected. All in vitro
experiments and assays were repeated three times.

Cell counting Kit-8 assay
The cell viability was assessed by Cell counting Kit-8
(CCK8) (Dojindo Laboratories, Kumamoto, Japan) ac-
cording to the manufacturer’s protocol. The experiments
were performed in sextuplicate.
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Total RNA extraction and quantificational real-time
polymerase chain reaction
Total RNA was isolated using TRIzol reagent (Invitrogen).
In brief, chondrocytes were washed with cold PBS and lysed
directly in a dish by adding 1ml of TRIzol reagent. After
passing several times through a pipette, the homogenized
samples were incubated for 5min at room temperature,
then transferred to a 1.5ml RNase-free tube; 0.2ml of
chloroform was added to the lysate to extract RNA. The
samples were centrifuged at 10,000×g for 15min at 4 °C,
and the upper aqueous phase was transferred into a fresh
tube and mixed with 0.5ml of isopropyl alcohol. Samples
were incubated with ice-cold for 10min and then centri-
fuged under 10,000×g for 10min at 4 °C. After removing
the supernatant, the RNA pellet was washed by adding 75%
ethanol. The mixture was centrifuged under 10,000×g for 5
min at 4 °C before air-dry. The concentration of each sam-
ple was measured by NanoDrop 2000 (Thermo Scientific,
USA). Complementary DNA (cDNA) synthesis was per-
formed by 1 μg of total RNA using a cDNA synthesis kit
(Trans Script, China) according to the manufacturer’s pro-
tocols. Gene expression assay primer pairs were ordered for
the detection of matrix metalloproteinase 13 (mmp13)
(primers: forward 5′-ACACTCAAATGGTCCCAAACG-
3′, reverse 5′-TCATGATGTCAGCAGTGCCA-3′), type II
collagen alpha 1 chain (col2a1) (primers: forward 5′-AGC-
GACTGTCCCTCGGAAAAAC-3′, reverse 5′-CCAGGT
AGGCGATGCTGTTCTTAC-3′) and β-actin (primers:
forward 5′- GGCTGTATTCCCCTCCATCG − 3′, reverse
5′- CCAGTTGGTAACAATGCCATGT − 3′). Quantita-
tive analysis of the cDNA was performed using the ABI
Quant Studio 3 (Applied Biosystems, USA) and All-in-one
qPCR (Gene Copoecia, USA). The thermal cycling condi-
tions were 95 °C for 10min, 40 cycles of 95 °C for 15 s,
60 °C for 30 s, and 72 °C for 30 s. β-actin was used as the
housekeeping gene for internal control. mRNA levels were
normalized by β-actin levels of each sample. Comparative
quantification was determined using the 2−ΔΔCt method.

Protein extraction and western blot
Cells were washed twice with ice-cold PBS and extracted
by 2× SDS reagent with protease inhibitor cocktail
(Roche, USA). After treatment with an ultrasonic cell
disruption system, the cell lysate was clarified by centri-
fugation at 11,000 rpm for 10min at room temperature,
protein content in the supernatant was collected and the
protein concentration was determined by BCA assay
(Pierce, USA). Aliquots (30 μg) of protein were separated
by 10% SDS-polyacrylamide gel electrophoresis and
transferred onto a poly (vinylidene difluoride) membrane
(Millipore, USA). The membrane was blocked with 5%
(w/v) skimmed milk in TBST (10 mM Tris-HCl, pH 7.8,
150 mM NaCl, and 0.1% Tween-20) for 1 h and then in-
cubated with anti-tubulin primary antibody (1:2000,

Abcam, USA) or anti-GAPDH primary antibody (1:2000,
Santa Cruz Biotechnology, USA), anti-MMP13 primary
antibody (1:3000, Abcam, USA) or anti-type II collagen
primary antibody (1:5000, Abcam, USA) or anti-
phosphorylated alpha subunit of AMPK (pAMPKα) pri-
mary antibody (1:2000, Cell Signal Technology, USA) or
anti-AMPK primary antibody (1:1000, Abcam, USA), in
TBST containing 5% (w/v) BSA overnight at 4 °C. After
washing three times, the blots were treated with anti-
mouse and anti-rabbit IgG, respectively (1:5000, Cell Sig-
nal Technology, USA) in TBST containing 5% (w/v)
BSA for 60 min, and the immune complex was detected
using an ECL plus detection kit (Cell Signaling Technol-
ogy, USA). Densitometric analysis was performed using
ImageJ software (National Institutes of Health, USA).

Enzyme-linked immunosorbent assay
Culture supernatant of chondrocytes and cartilage ex-
plants was collected after 24 h or 48 h of incubation re-
spectively. The concentrations of MMP-13 were
measured by enzyme-linked immunosorbent assay
(ELISA) (mice chondrocytes: Cusabio, China; human
cartilage explants: R&D Systems, UK) following the
manufacturer’s instruction and were normalized to cell
protein concentrations.

Statistical analysis
All quantitative data were presented as means ± standard
deviation (SD) and analyzed by Program Graph Pad
Prism version 6.0. Multiple comparisons were performed
by one-way ANOVA with Tukey’s post hoc test or re-
peated measures ANOVA with Bonferroni’s post hoc
test as appropriate. The interaction effect between time
and groups was also assessed in the repeated measures
ANOVA. p value < 0.05 was considered statistically sig-
nificant for all tests.

Results
Both intragastric and intraarticular metformin attenuated
articular cartilage degradation in DMM-induced OA
model
To investigate the ultrastructure of the cartilage surface at
8 weeks after surgery, SEM evaluation of the tibia plateau of
surgical-induced OA mice was performed. As shown in
Fig. 1a, the cartilage surfaces in mice in non-operation and
sham-operated groups were smooth with no ultrastructure
changes. Mice in either IGS group or in the IAS group had
a large area of stripped cartilage and exfoliation and ex-
posed subchondral bone with microcracks. A slightly
stripped cartilage and superficial avulsion were shown in
both the IGM and the IAM groups. In addition, the IGS
and IAS groups presented with severe cartilage damage and
less Safranin O staining, while the IGM and IAM groups
displayed a moderate degree of cartilage damage and loss of
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Safranin O staining (Fig. 1b). The mean subjective scores
recommended by OARSI among the IGS and IAS groups
were both statistically significantly higher compared with
that among the non-operation or sham-operation group;

however, the OARSI score in the IGM group was statisti-
cally significantly lower than that in the IGS group (Fig. 1c).
Similar results were observed between the IAM group and
the IAS group.

Fig. 1 Effect of intragastric and intraarticular metformin on articular cartilage degradation in the destabilization of the medial meniscus (DMM)-
induced OA mice model. a Representative scanning electron microscopy (SEM) images of the articular cartilage of the tibia plateau. Stripped
cartilage, with a large area of exfoliation and exposed subchondral bone, was observed in the IGS and IAS groups. Mice in the IGM and IAM
groups presented with slightly stripped cartilage and superficial avulsion. b Safranin O-fast green staining for frontal sections of knee at 8 weeks
after surgery. The IGS and IAS groups presented with severe cartilage damage and less Safranin O staining. The IGM and IAM groups displayed a
moderate degree of cartilage damage and loss of Safranin O staining. c Osteoarthritic changes in knee joints as quantified with the Osteoarthritis
Research Society International (OARSI) score. Samples from the IGS and IAS groups showed more severe articular cartilage destruction compared
with those from the IGM or IAM group. Data were expressed as the mean ± 95% confidence intervals. *p < 0.05; **p < 0.01. Statistical significance
was calculated using one-way ANOVA with Tukey’s post hoc test. IGS, intragastric saline administration; IAS, intraarticular saline injection; IGM,
intragastric metformin administration; IAM, intraarticular metformin injection
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Both intragastric and intraarticular metformin modulated
pain-related behavior in DMM-induced OA model
Mechanical hyperalgesia and hindlimb weight-bearing
asymmetry were examined to assess the pain relief effect of
IGM and IAM. The development of OA in the mice led to
a decreased paw withdrawal thresholds and weight-bearing
on the operated hindlimb, suggesting the occurrence of
mechanical hyperalgesia and asymmetric of hindlimb
weight-bearing (Fig. 2). Paw withdrawal threshold was
higher in the IGM group than that in the IGS group
(Fig. 2a). Similar results were observed between the IAM
group and the IAS group (Fig. 2b). In addition, decreased
weight-bearing asymmetry was observed in the IGM group
compared with the IGS group. (Fig. 2c). Difference with a
possible trend toward significance (p = 0.052) in paw with-
drawal threshold was observed among the IAM group and
the IAS group (Fig. 2d).

Metformin protected against interleukin-1β-driven
catabolism in chondrocytes and cartilage explants
To explore the underlying mechanism, we further exam-
ined whether metformin can protect against catabolism
of interleukin-1β (IL-1β)-treated chondrocytes and car-
tilage explants in vitro. As shown in Fig. 3a, 24 h after
metformin treatment the mRNA level of matrix metallo-
proteinase 13 (mmp13) in chondrocytes decreased in a
dose-response manner. Such an effect was also shown
by western blot (Fig. 3b, c). The expression levels of
MMP13 in culture media of chondrocytes and cartilage
explants were also decreased after metformin treatment
(Additional file 1: Figure S1a-S1b). By contrast, metfor-
min did not significantly modulate the mRNA levels of
anabolic gene type II collagen alpha 1 chain (col2a1)
(data not shown). Interestingly, 10 mM and 20 mM met-
formin significantly enhanced the expression level of
type II collagen (Fig. 3d, e). Meanwhile, no statistically
significant change of cell viability was found in chondro-
cytes treated with 1 mM or 10mM metformin (Fig. 3f).

AMPK activation was involved in the protective effect of
metformin against IL-1β-driven catabolism in
chondrocytes
To clarify the mechanisms by which metformin led to
decreased aggrecanase activity and proteoglycan break-
down by chondrocytes, we then investigated whether
AMPK involved in the anti-catabolic effects of metfor-
min. Ten millimolar metformin was selected to treat
chondrocyte since it protects against catabolism without
decreasing cell viability. There was no statistically signifi-
cant change in the expression level of AMPKα1 in chon-
drocyte cultured in presence of IL-1β 24 h after
treatment with metformin; however, the protein expres-
sion level of pAMPKα, indicating the activation of
AMPK. Meanwhile, the effect of metformin on AMPKα1

was diminished when dorsomorphin, an inhibitor of
AMPK, was added (Fig. 4a).
When dorsomorphin was added, the statistically sig-

nificant higher expression level of mmp13 was found in
chondrocytes cultured in the presence of IL-1β, metfor-
min, and dorsomorphin than chondrocytes cultured in
presence of IL-1β and metformin. However, no differ-
ence was found when DMSO was added (Fig. 4b). West-
ern blot analysis also showed that higher expression of
MMP13 (Fig. 4c, d) but lower expression of type II colla-
gen (Fig. 4e, f) were observed among chondrocytes when
they were cultured in the presence of IL-1β, metformin,
and dorsomorphin than those cultured in IL-1β and
metformin. Moreover, the effects of metformin on ex-
pression of MMP13 or type II collagen were diminished
when DMSO was added (Fig. 4c–f). Similar results were
found in ELISA analysis measuring both MMP13 levels
in culture media of chondrocytes and cartilage explants
(Additional file 1: Figure S1c-S1d). These results indi-
cated that the anti-catabolic effect of metformin was di-
minished when AMPK activation was inhibited.

Discussion
In the present study, we found that both intragastric and
intraarticular metformin attenuated articular cartilage
degradation and modulated pain-related behavior in a
DMM OA mice model, and metformin’s anabolic and
anti-catabolic effects may be through its effect on the ac-
tivation of AMPK. These findings provided new evidence
of the potential therapeutic effect of metformin on OA.

Comparison with previous studies
To date, there is a paucity of data regarding the effect of
metformin on cartilage, chondrocyte, or pain in OA. A pre-
vious ex vivo study reported that metformin inhibited the
release of NO, MMP3, and MMP13 of mice femoral head
cartilage explants in response to IL-1β and TNF-α [11].
More recently, an in vitro study found that metformin sup-
pressed IL-1beta-induced oxidative and osteoarthritis-like
inflammatory changes [29]. In addition, a few observational
studies have examined the relation of metformin use to the
risk of OA, cartilage volume loss, or joint replacement; re-
sults, however, are conflicting. A cohort study of partici-
pants with OA and type 2 diabetes reported that patients
receiving a combination of cyclooxygenase-2 inhibitors and
metformin therapy had a lower risk of joint replacement
than those receiving cyclooxygenase-2 inhibitors alone [30].
A more recent cohort study conducted among patients
with radiographic knee OA and obese also showed that the
rate of medial cartilage volume loss was lower in metformin
users than non-users [31]. However, in another cohort
study of patients with type 2 diabetes, no association was
found between metformin prescription and the risk of OA,
but no radiograph was available to confirm OA diagnosis
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[32]. In addition, all of three aforementioned studies did
not use an active anti-diabetic medication as a comparator;
thus, the findings may be susceptible to confounding by in-
dication bias and the causal relationship between metfor-
min and OA progression cannot be confirmed. A few
studies also reported that metformin could prevent or re-
verse neuropathic pain by decreasing synaptic number,
stimulating autophagy flux, and attenuating neuroinflam-
mation [33–35].

Possible explanations
While the biological mechanisms linking metformin to
the attenuation of OA progression or pain relief are not
fully understood, inhibition of AMPK may partly explain
these findings. AMPK is an emerging regulator of the in-
flammatory process in OA [13–15]. Reduced AMPKα
phosphorylation was noted in both the mice surgical
instability-induced OA model and knee cartilage of hu-
man OA [10, 11]. AMPK deficiency in chondrocytes

Fig. 2 Effect of intragastric and intraarticular metformin on pain-related behavior in the destabilization of the medial meniscus (DMM)-induced
OA mice model. Pain related behavior, measured as paw withdrawal thresholds to mechanical stimulation with a circular probe (a, b) or hindlimb
weight-bearing asymmetry (c, d), increased after the induction of OA in mice by DMM surgery. Paw withdrawal threshold was higher in the IGM
group than that in the IGS group (a). Similar results were observed between the IAM group and the IAS group (b). In addition, decreased weight-
bearing asymmetry was observed in the IGM group compared with the IGS group (c). Difference with a possible trend toward significance (p =
0.052) in paw withdrawal threshold was observed among the IAM group and the IAS group (d). Data were expressed as the mean ± 95%
confidence intervals. *p < 0.05, compared between the IGS and IGM groups or between the IAS and IAM groups at single time point, by repeated
measures ANOVA with Bonferroni’s post hoc test; +p < 0.05; +++p < 0.001, compared between the IGS and IGM groups or between the IAS and
IAM groups by repeated measures ANOVA with Bonferroni’s post hoc test; IGS, intragastric saline administration; IAS, intraarticular saline injection;
IGM, intragastric metformin administration; IAM, intraarticular metformin injection
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could disrupt articular cartilage homeostasis by enhan-
cing catabolic activity and promoting chondrocyte apop-
tosis [20]. In addition, upregulating AMPK activity was
showed to attenuate IL-1β and tumor necrosis factor-α
induced catabolic gene expression in chondrocytes
in vitro [10, 11]. Thus, the AMPK activator, i.e., metfor-
min, may prevent the progression of OA. In the present
study, AMPK inhibitor dorsomorphin inhibited anti-
catabolic effect of metformin in chondrocyte, which
indicated the involvement of AMPK pathway in the pro-
tective effect of metformin on cartilage.

In vivo animal studies have shown that either pharmaco-
logical activation or genetic regulation of AMPK had pre-
ventive, curative, and potential reversal effects on pain in
models of nerve injury, chemotherapy-induced peripheral
neuropathy, postsurgical pain, inflammatory pain, and dia-
betic neuropathy [12]. The underlying mechanisms involved
the inhibition of signaling associated with pathological pain
and reduction of dorsal root ganglia and trigeminal ganglion
neuron excitability [12]. Thus, it could be speculated that
metformin ameliorated OA-related pain behavior by modu-
lating the AMPK signaling pathway as well.

Fig. 3 Metformin protected against interleukin-1β (IL-1β)-driven catabolism in chondrocytes. Mice articular chondrocytes (n = 3) were cultured
with IL-1β and metformin (1, 10, and 20 mM) for 24 h, and the transcription of mmp13 (a) was determined via qRT-PCR in mice articular
chondrocytes treated with IL-1β and metformin (1, 10, and 20mM). Protein levels of MMP13 (b) and type II collagen (d) were detected by
western blot. The quantitation of protein expression of MMP13 (c) and type II collagen (e) was done by densitometry analysis of the protein
bands. Values were normalized against tubulin or GAPDH. Chondrocyte viability was assessed with cell counting kit-8 (CCK8) assay (f). Data were
expressed as the mean ± 95% confidence intervals. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Statistical significance was calculated using
one-way ANOVA with Tukey’s post hoc test. MMP13, matrix metalloproteinase 13; OD, optical density; GAPDH,
glyceraldehyde-phosphate dehydrogenase
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Limitations
First, in the mouse DMM model, metformin was given
without a dose gradient, and identification and use of an
optimal dosage might provide more useful information.
Second, the role of AMPK in mediating chondroprotec-
tive effect of metformin was only measured in vitro, and
further in vivo studies are warranted to verify this mech-
anism. Third, dorsomorphin was not a specific AMPK
inhibitor which also inhibits BMP signaling and the

VEGF type 2 receptor [36–38]. Notwithstanding its limi-
tation, dorsomorphin was still used to inhibit AMPK in
recent studies [39, 40] since it remains the only small
molecule that has been found to inhabit AMPK signaling
[41]. However, it would be more specific to apply AMPK
knockout mouse models to examine the specific role of
AMPK in mediating the chondroprotective and pain re-
lief effects of metformin; thus, future studies are still
warranted to explore. Finally, in the current study, we

Fig. 4 AMPK activation is involved in the protective effect of metformin against IL-1β-driven catabolism in chondrocytes. Mice articular
chondrocytes (n = 3) were cultured in the absence of IL-1β, with or without 10 mM metformin, dorsomorphin, or dimethyl sulfoxide (DMSO),
vehicle of dorsomorphin. Protein levels of pAMPKα and AMPKα1 (a) were detected by western blot. The transcription of mmp13 (b) was
determined by qRT-PCR. Protein levels of MMP13 (c) and type II collagen (e) were detected by western blot. The quantitation of protein
expression of MMP13 (d) and type II collagen (f) was done by densitometry analysis of the protein bands. Values were normalized against tubulin
or GAPDH. Data were expressed as the mean ± 95% confidence intervals. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; statistical significance
was calculated using one-way ANOVA with Tukey’s post hoc test. pAMPKα, phosphorylated alpha subunit of adenosine monophosphate-
activated protein kinase; AMPKα1, alpha1 subunit of adenosine monophosphate-activated protein kinase; MMP13, matrix metalloproteinase 13;
dimethylsulfoxide; GAPDH, glyceraldehyde-phosphate dehydrogenase
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only assessed on potential mechanisms of metformin,
i.e., activation of AMPK, further studies are needed to
explore other pathways. Besides the AMPK-dependent
effect, metformin may target multiple signaling path-
ways, e.g., mTOR, NF-κB, or inhibiting mitochondrial
glycerophosphate dehydrogenase [42, 43].

Conclusions
Metformin attenuates OA structural worsening, possibly
through activating AMPK, and modulates pain, suggest-
ing its potential for OA prevention or treatment.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13075-020-2129-y.

Additional file 1. AMPK activation is involved in the effect of metformin
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absence of IL-1β, with or without 10 mM metformin, dorsomorphin or
DMSO. Concentration of MMP13 of culture supernatant were detected by
ELISA and were normalized to cell protein concentrations. Data were
expressed as the mean ± 95% confidence intervals. * p < 0.05; ** p < 0.01;
*** p < 0.001; MMP13, matrix metalloproteinase 13; DMSO, dimethylsulfox-
ide; IL-1β, interleukin-1β.
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