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Abstract

Background: Radiographs of the sacroiliac joints are commonly used for the diagnosis and classification of axial
spondyloarthritis. The aim of this study was to develop and validate an artificial neural network for the detection of
definite radiographic sacroiliitis as a manifestation of axial spondyloarthritis (axSpA).

Methods: Conventional radiographs of the sacroiliac joints obtained in two independent studies of patients with
axSpA were used. The first cohort comprised 1553 radiographs and was split into training (n = 1324) and validation
(n = 229) sets. The second cohort comprised 458 radiographs and was used as an independent test dataset. All
radiographs were assessed in a central reading session, and the final decision on the presence or absence of
definite radiographic sacroiliitis was used as a reference. The performance of the neural network was evaluated by
calculating areas under the receiver operating characteristic curves (AUCs) as well as sensitivity and specificity.
Cohen’s kappa and the absolute agreement were used to assess the agreement between the neural network and
the human readers.

Results: The neural network achieved an excellent performance in the detection of definite radiographic sacroiliitis
with an AUC of 0.97 and 0.94 for the validation and test datasets, respectively. Sensitivity and specificity for the cut-
off weighting both measurements equally were 88% and 95% for the validation and 92% and 81% for the test set.
The Cohen’s kappa between the neural network and the reference judgements were 0.79 and 0.72 for the
validation and test sets with an absolute agreement of 90% and 88%, respectively.

Conclusion: Deep artificial neural networks enable the accurate detection of definite radiographic sacroiliitis
relevant for the diagnosis and classification of axSpA.
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Background
Axial spondyloarthritis (axSpA) is a chronic inflamma-
tory disease that mainly affects the axial skeleton, the
sacroiliac joints and the spine. For many years, the de-
tection of radiographic sacroiliitis has been the only way
to make a definite diagnosis of the disease prior to the
development of structural spinal damage. The presence
of definite radiographic sacroiliitis (defined as sacroiliitis
of at least grade 2 bilaterally or at least grade 3 unilat-
erally) is also a mandatory criterion of the modified New
York criteria for ankylosing spondylitis (AS) [1]. Although
magnetic resonance imaging (MRI) of the sacroiliac joints
nowadays enables earlier diagnosis of axSpA, definite
radiographic sacroiliitis can be detected at the time of
diagnosis in about 33% of the patients with symptoms
lasting up to 1 year and in about 50% of the patients with
a symptom duration of 2 to 3 years [2]. Conventional radi-
ography of the sacroiliac joints is therefore still recom-
mended as the first imaging method in patients with
suspected axSpA [3]. Furthermore, radiographic sacroilii-
tis — together with sacroiliitis on MRI — is included in
the Assessment of Spondyloarthritis International Society
(ASAS) classification criteria for axSpA [4]. Depending on
the presence or absence of definite radiographic sacroilii-
tis, axSpA can be classified as either radiographic axSpA
(r-axSpA, synonymous to AS) or non-radiographic axSpA
(nr-axSpA) [5]. Such a classification could be relevant for
both clinical practice (currently, the labels for biological
disease-modifying antirheumatic drugs — bDMARDs are
different for AS and nr-axSpA) and research (i.e., stratifi-
cation or selection of patients in a clinical trial).
Although conventional radiography of the sacroiliac

joints still plays an important role in both clinical prac-
tice and clinical trials, its reliability has been reported as
mostly poor in a number of studies, even when assessed
by expert readers [6–10]. In addition, it has been shown
that untrained local readers perform worse than expert
readers specialised in SpA [10]. One possible solution to
achieve a comparable high accuracy as an expert in de-
tecting radiographic sacroiliitis, even in non-specialised
clinics, could be to develop an artificial intelligence-
based model for the analysis of radiographs.
Deep learning has already produced remarkable results

in the classification of medical and non-medical data.
For example, deep neural networks have been trained to
detect breast cancer in mammographs, to classify skin
cancer or to label chest radiographs [11–13]. In all of
these studies, the investigators did not develop a de novo
model but applied a transfer learning approach using a
pre-trained network. Such an approach allows the know-
ledge of pre-trained models from non-medical fields to
be used for a new visual task, effectively reducing the
amount of data required for training while increasing
the accuracy of the models.

In the present study, we therefore aimed to develop
and validate a deep neural network for the detection of
definite radiographic sacroiliitis, using centrally scored
images from two observational cohort studies.

Methods
Cohort description
In this project, we used imaging data from two inde-
pendent sources: (1) Patients With Axial Spondyloarthri-
tis: Multicountry Registry of Clinical Characteristics
(PROOF) and (2) German Spondyloarthritis Inception
Cohort (GESPIC).
PROOF is an ongoing study conducted in clinical

practices in 29 countries and includes 2170 adult
patients diagnosed with axSpA (non-radiographic or
radiographic) ≤ 12months before study enrolment and
fulfilling the ASAS classification criteria for axSpA. In
1553 patients, radiographs of the sacroiliac joints were
available for central reading.
GESPIC is a multicentre inception cohort study con-

ducted in Germany and includes 525 patients with
axSpA [14]. In 458 patients, radiographs of the sacroiliac
joints were available for central reading.
Baseline characteristics of both cohorts are presented

in Table 1.

Assessment of radiographic sacroiliitis
Radiographs of the sacroiliac joints were collected, digi-
tised if necessary, anonymised and subsequently cen-
trally graded by trained and calibrated readers using the
modified New York criteria [1]:

Grade 0 Normal

Grade 1 Suspicious changes

Grade 2 Minimal abnormality: small localised areas with erosion or
sclerosis, without alteration in the joint width

Grade 3 Unequivocal abnormality: moderate or advanced sacroiliitis
with erosions, evidence of sclerosis, widening, narrowing or
partial ankylosis

Grade 4 Severe abnormality: total ankylosis

In the PROOF study, images were first assessed by the
local readers, then by central reader 1 (DP, board-
certified rheumatologist with more than 10 years of ex-
perience in SpA imaging assessment), who was blinded
to the results of the local assessment. In case of a dis-
agreement on the presence of definite radiographic
sacroiliitis (grade ≥ 2 bilaterally or grade ≥ 3 unilaterally)
between the local and central reader 1, the radiograph
was evaluated by central reader 2 (HH, board-certified
rheumatologist with more than 10 years of experience in
SpA imaging assessment), who was blinded to the previ-
ous assessments. The final decision on the presence of
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definite radiographic sacroiliitis and, therefore, on the
classification as nr-axSpA or r-axSpA, was made based
on the decision of two of the three readers.
In GESPIC, no local reading of radiographs was

demanded; all collected images were scored independently

by two trained and calibrated central readers (VRR and
MT, board-certified rheumatologists with approximately
5 years of experience in SpA imaging assessment).

Image selection and pre-processing
The PROOF dataset consists of 1553 radiographs of the
sacroiliac joints in DICOM (Digital Imaging and
Communications in Medicine) format, varying in size,
resolution and quality (Fig. 1). The Horos Project
DICOM Viewer (version 4.0.0, www.horosproject.org)
was used to adjust the greyscale levels of all images and
to convert them to the Tagged Image File Format (TIFF)
afterwards. Images including other body parts such as
the thoracic spine were manually cropped to the pelvis.
The final dataset for building the model was split
randomly into training (1324 radiographs, 85%) and
validation datasets (229 radiographs, 15%).
For testing the generalisability across datasets, we

defined two subgroups in the GESPIC dataset: (1)
patients with the presence or absence of definite
radiographic sacroiliitis in the opinion of two readers
(n = 352) and (2) patients with disagreement of the
central readers on the final classification (n = 106).
Images in the test dataset were pre-processed exactly as
the training and validation datasets.

Model training
Model training was performed on a dedicated Ubuntu
18.04 workstation with two Nvidia GeForce RTX 2080ti
graphic cards as well as on a GPU node of the Berlin
Institute of Health (BIH) high-performance computing
cluster using four Nvidia Tesla V100 graphic cards. All
model training was mainly performed using Python (ver-
sion 3.7) including the fastAI application programming
interface, which is built on top of PyTorch [15, 16].

Table 1 Baseline characteristics of patients with axial
spondyloarthritis from the PROOF and GESPIC cohorts

Parameter at baseline PROOF
(n = 1553)

GESPIC
(n = 458)

Age, years, mean (SD) 34.7 (10.5) 35.7 (10.3)

Male sex, n (%) 983 (63.3) 243 (53.1)

Duration of symptoms, years, mean (SD) 4.7 (6.8) 4.0 (2.7)

HLA-B27 positive, n (%) 836 (64.6) 359 (78.4)

CRP, mg/l, mean (SD) 15.6 (23.0) 11.5 (18.2)

ASDAS-CRP, mean (SD) 2.9 (1.1) 2.6 (1.0)

BASDAI, 0–10, mean (SD) 4.5 (2.3) 3.9 (2.1)

BASFI, 0–10, mean (SD) 3.3 (2.5) 2.8 (2.3)

Peripheral arthritis, n (%) 503 (32.4) 65 (14.2)

Uveitis, n (%) 151 (9.7) 79 (17.3)

Psoriasis, n (%) 106 (6.8) 49 (10.7)

IBD, n (%) 40 (2.6) 12 (2.6)

Family history of SpA, n (%) 291 (18.7) 147 (32.1)

Treatment with NSAIDs, n (%) 1204 (77.5) 305 (66.6)

Treatment with csDMARDs, n (%) 539 (34.7) 107 (23.4)

Treatment with systemic steroids, n (%) 119 (7.7) 40 (8.7)

Treatment with a TNF inhibitor, n (%) 234 (15.1) 11 (2.4)

ASDAS-CRP C-reactive protein-based ankylosing spondylitis disease activity
score, axSpA axial spondyloarthritis, BASDAI Bath Ankylosing Spondylitis
Disease Activity Index, BASFI Bath Ankylosing Spondylitis Functional Index, CRP
C-reactive protein, csDMARDs conventional synthetic disease-modifying
antirheumatic drugs, IBD inflammatory bowel disease, nr-axSpA non-
radiographic axial SpA, NSAIDs non-steroidal anti-inflammatory drugs, r-axSpA
radiographic axial SpA, SD standard deviation, SpA spondyloarthritis, TNF
tumour necrosis factor

Fig. 1 Flowchart for the selection of cases from the PROOF (training and validation set) and GESPIC (test set) studies
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As a base model, we used a convolutional neural
network (ResNet-50 architecture) pre-trained on the
ImageNet-1k dataset, which includes over 1.28 million
images [17]. The images were augmented prior to train-
ing through various transformations including flipping,
rotation of up to 10°, magnification of up to 1.1, lighting
variations and warping. We further utilised the mix-up
method during training, originally introduced by Zhang
et al. [18], in which images of different classes (nr-axSpA
and r-axSpA) are combined during training to reduce
memorisation of noisy labels and increase overall model
robustness. As a loss function, we used cross entropy
label smoothing, which reduced high-confidence predic-
tions of the models, thus supporting regularisation and
avoiding overfitting with subsequent improved general-
isation of the models on new data (e.g., test dataset).
The optimal learning rate for training was determined
using a learning rate range test [19]. Model training was
performed with cyclical [19], discriminative learning
rates (as initially implemented by Howard and Ruder
[20]) and a progressive re-sizing approach, starting with
image sizes of 224 × 224 pixels (which is the default in-
put size for the ImageNet pre-trained ResNet-50) and
next increasing the resolution to 512 × 512 pixels and
then to 768 × 768 pixels. During training, first only the
last two classification layers of the model were trained,
with the weights of the other network layers remaining
frozen. A total of 100 epochs were trained, monitoring
the area under the receiver operating characteristics
curve (AUC) on the validation dataset and saving the
model weights on every improvement. After 100 epochs,
the weights of the model with the highest AUC value
were re-loaded, the model was unfrozen and again
trained for another 100 epochs (training all layers of the
network), while monitoring the AUC and saving the
weights at every improvement. This approach was re-
peated for all image resolutions. The size of the mini
batches was 64 for 224 × 224 pixels, 32 for 512 × 512
pixels and 84 for 768 × 768 pixels. The training for lower
resolutions could be performed at our local workstation,
while for 768 × 768 pixels, computation has been per-
formed on the HPC for Research cluster of the Berlin
Institute of Health. Overall, model training took approxi-
mately 24 h on our local machine and an additional 6 h
on the cluster. After training, Gradient-weighted Class
Activation Mapping (Grad-CAM) was used to create ac-
tivation maps for verification that the model actually
used the sacroiliac joints to determine if definite radio-
graphic sacroiliitis was present [21].

Statistical analysis
Statistical analysis was performed using the “R”
statistical environment (version 3.6), the “tidyverse”,
“ROCR” and “irr” libraries [22–25]. Raw predictions of

the model on the validation dataset as well as on the test
dataset using an image resolution of 768 × 768 pixels
were exported from the python environment as comma-
separated values and imported into “R”. ROC curves and
precision-recall curves were plotted, and the AUC was
calculated. Three different cut-offs were chosen through
repeated cross validation for the calculation of sensitivity
and specificity, the first cut-off favouring sensitivity, the
second favouring specificity and the third aiming at bal-
ancing both. Confusion matrices were constructed using
the predefined cut-offs. Cohen’s kappa and the percent-
age absolute agreement were used to assess the agree-
ment between the human readers and the network.
Ninety-five per cent confidence intervals for calculated
kappa values were estimated using bootstrapping with
1000 repetitions. A p-value of < 0.05 was considered sta-
tistically significant.

Ethics approval
Both PROOF and GESPIC were approved by the local
ethics committees of each study centre in accordance
with the local laws and regulations and were conducted
in accordance with the Declaration of Helsinki and
Good Clinical Practice. The institutional review board of
the Charité — Universitätsmedizin Berlin additionally
approved GESPIC. Written informed consent was
obtained from all patients.

Results
Definite radiographic sacroiliitis in the opinion of two
readers was present in 873 (65.9%) patients from the
training set (PROOF, n = 1324) and in 150 (65.5%)
patients from the validation set (PROOF, n = 229). In a
total of 369 (27.9%) and 63 (27.5%) patients in the
training and validation sets, respectively, there was a
discrepancy between the local reader and central reader
1, which automatically resulted in the involvement of
central reader 2. A total of 146 (11.0%) and 37 (16.2%)
patients in the training and validation sets were re-
classified after the central reading, meaning that, in these
cases, the ratings of both central readers differed from
the rating of the local reader.
In the test set (GESPIC), both readers agreed on the

presence of radiographic sacroiliitis in 223 (48.7%) cases
and on the absence of radiographic sacroiliitis in 129
(28.2%) cases and disagreed in 106 (23.1%) cases.

Model performance in the validation dataset
There was excellent performance of the model on the
validation dataset. The receiver operating characteristics
curve (ROC) analysis showed an AUC of 0.969. For the
precision-recall (PR) curve, an average AUC of 0.989
was achieved. Both the local and central expert readers
remained below the ROC and PR curves and were
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therefore outperformed by the accuracy of the model. We
propose three cut-offs to convert the floating-point pre-
dictions into integer values with 1 representing the pres-
ence of definite radiographic sacroiliitis and 0 its absence.
Cut-offs weighting sensitivity over specificity and specifi-
city over sensitivity were used in order to find the optimal
balance between both parameters (defined as the max-
imum sum between sensitivity and specificity). The first
cut-off value, which favours sensitivity over specificity, was
calculated to be 0.475, resulting in a sensitivity of 0.993
and a specificity of 0.177 for the detection of r-axSpA.
The second cut-off, which favoured specificity over sensi-
tivity, was 0.787, resulting in a sensitivity of 0.753 and a
specificity of 0.987. The third cut-off was 0.724, resulting
in a sensitivity of 0.880 and a specificity of 0.949. ROC
curves and precision-recall curves of model performance
are shown in Fig. 2a, and Table 2 summarises

performance results as confusion matrices with kappa
values and values of absolute agreement.

Model performance on the independent dataset
The model’s performance on the test dataset was
assessed in two subsets. In the first subset, which
comprised the cases where the two readers agreed on
either the presence or absence of definite radiographic
sacroiliitis (n = 352), the model performed slightly worse
than on the validation dataset with an AUC value of
0.936 and an average precision (AP) value of 0.962.
Again, we applied the three cut-offs as calculated from
the validation dataset: The first cut-off, which weights
sensitivity over specificity, yielded a sensitivity of 0.982
and a specificity of 0.264. For the second cut-off, which
weights specificity over sensitivity, a sensitivity of 0.816
and a specificity of 0.930 were achieved. For the third

Fig. 2 Receiver operation characteristics curve and precision-recall curve for the model performance in detecting definite radiographic sacroiliitis
(classified as non-radiographic or radiographic axial spondyloarthritis) on the validation (a) and test (b) dataset as well as the corresponding area
under the curve and average precision. Individual values for the local and the central expert reader are displayed as a triangle or dot in a. Since
the reference standard in b was the agreement of two independent readers, their accuracy is not presented
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cut-off, aiming at defining optimal performance in terms
of both performance measures, we calculated a sensitiv-
ity of 0.915 and specificity of 0.806. Figure 2b shows the
ROC- and precision-recall curves for the model per-
formance on the test dataset. Figure 3 demonstrates the
different values for sensitivity and specificity achieved
for different cut-offs on the test and validation datasets.
Table 3 provides confusion matrices for the three pro-
posed cut-offs and the overall accuracy. Figure 4 shows
examples of Grad-CAM maps of the neural network for
predictions on the test datasets.

For the second subset of cases, with disagreement
between the two central readers (n = 106), the algorithm
resulted in the following classification distribution: cut-
off 1 (favouring sensitivity), 8 nr-axSpA and 98 r-axSpA;
cut-off 2 (favouring specificity), 73 nr-axSpA and 33 r-
axSpA; and cut-off 3 (balanced sensitivity and specifi-
city), 53 nr-axSpA and 53 r-axSpA.
The interrater agreement between the human readers,

as measured by Cohen’s kappa on the entire test dataset
(n = 458), was moderate with k = 0.53 (95% CI 0.46–0.61)
and a percentage agreement of 76.9%. The agreement

Table 2 Confusion matrices for the three proposed cut-offs for the model predictions regarding the presence of definite
radiographic sacroiliitis on the validation dataset

nr-axSpA r-axSpA

Cut-off 1, favouring sensitivity over specificity

Model predicts nr-axSpA 15 1 16

Model predicts r-axSpA 64 149 227

79 150 229

Cohen’s kappa 0.22 (95% CI 0.11–0.33) Accuracy: n = 164/229 (71.6%)

Cut-off 2, favouring specificity over sensitivity

Model predicts nr-axSpA 78 38 116

Model predicts r-axSpA 1 112 113

79 150 229

Cohen’s kappa 0.66 (95% CI 0.57–0.76) Accuracy: n = 190/229 (83.0%)

Cut-off 3, optimal relationship between sensitivity and specificity

Model predicts nr-axSpA 75 19 94

Model predicts r-axSpA 4 131 135

79 150 229

Cohen’s kappa 0.79 (95% CI 0.7–0.87) Accuracy: n = 206/229 (90.0%)

Fig. 3 Sensitivity and 1-specificity (false positive rate) on the test and validation datasets using different cut-off values for the model predictions
regarding the presence of definite radiographic sacroiliitis (classification as non-radiographic or radiographic axial spondyloarthritis). We analysed
three cut-off values, indicated by vertical dashed lines. Cut-off 1 weights sensitivity over specificity, cut-off 2 weights specificity over sensitivity
and cut-off 3 aims to be the optimal balance between the two performance measures. Cut-offs were only calculated on the validation dataset
and then applied to the test and validation datasets
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between reader 1 and the neural network was similar
with k = 0.54 (95% CI 0.46–0.62) and a percentage
agreement of 77.3%. The agreement between reader 2
and the neural network was slightly better with k = 0.57
(95% CI 0.49–0.65) and a percentage agreement of
80.3%.

Discussion
In this study, we successfully developed and tested an
artificial intelligence model for the detection of
radiographic sacroiliitis on conventional radiographs.
With this model, we achieved an excellent model
accuracy on the validation data. Furthermore, we
demonstrated the generalisability of our model on a test
dataset of novel data, achieving a performance at least
comparable to that of two human experts.
Although magnetic resonance imaging is increasingly

used for the detection of sacroiliitis in industrialised
nations, radiographs are still important. In many
countries, radiographs remain the first and often the only
imaging procedure for examining patients with axSpA
because MRI is expensive and not widely available. The
detection of definite radiographic sacroiliitis is important
for both the diagnosis and classification of axSpA. At the
same time, it is well known that conventional radiographs
are not very reliable in detecting sacroiliitis [6–10]. In the
present study, we used a large and unique dataset to train,
validate and test the model. The resulting performance
was at least as good as (but most likely better than) the
performance of an experienced reader with expertise in
radiographic sacroiliitis assessment. The neural network
was able to achieve almost the same level of performance

in both the validation and training sets, indicating a high
level of reliability and robustness of the model. Our model
can therefore be used as an additional diagnostic aid in
clinical practice and as a classification tool in research
projects involving patients with axSpA.
Neural networks have already been applied to a variety

of medical imaging data, including radiographs but, to
our knowledge, not for the detection of spondyloarthritis
[11–13, 26]. However, a low generalisability, i.e., poor
performance of the models on new data, is an important
challenge in training neural networks. A new meta-
analysis on ‘deep learning performance against health-
care professionals’ by Kim et al. revealed methodological
shortcomings that are present in many published studies
on deep learning in medicine [27]. They criticised that
many studies either did not compare the performance of
their model with that of a human domain expert or
assessed the performance of their model on a different
dataset than the one used for human performance as-
sessment, resulting in excessively high accuracies, mainly
due to over-adaptation, which consequently have a low
generalisability [27]. Similar observations were made by
Yao et al., who showed that, while they identified 155
studies on deep learning in medicine, the studies often
lacked external validation data [28]. However, the use of
external validation data is an important measure to
prove generalisability. It has been shown that medical
computer vision models adapt poorly to the use of differ-
ent scanners or imaging protocols, and the lack of external
validation is likely to result in poor generalisability of the
model to new data [29]. In a recent study, McKinney et al.
evaluated the performance of a neural network for the

Table 3 Confusion matrices for the three proposed cut-offs for the model predictions regarding presence of definite radiographic
sacroiliitis on the test dataset

nr-axSpA r-axSpA

Cut-off 1, favouring sensitivity over specificity

Model predicts nr-axSpA 36 4 40

Model predicts r-axSpA 93 219 312

129 223 352

Cohen’s kappa 0.3 (95% CI 0.21–0.4) Accuracy n = 255/352 (72.4%)

Cut-off 2, favouring specificity over sensitivity

Model predicts nr-axSpA 120 41 161

Model predicts r-axSpA 9 182 191

129 223 352

Cohen’s kappa 0.7 (95% CI 0.63–0.77) Accuracy n = 302/352 (85.8%)

Cut-off 3, optimal relationship between sensitivity and specificity

Model predicts nr-axSpA 104 19 123

Model predicts r-axSpA 25 204 229

129 223 352

Cohen’s kappa 0.72 (95% CI 0.65–0.8) Accuracy n = 308/352 (87.5%)
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detection of breast cancer in mammographs, showing that
the network surpassed human performance [11]. They
used different datasets from different studies to train and
test their developed models and were thus able to demon-
strate sufficient generalisability of their models.
Similar to their approach, we also used a heterogeneous

training dataset with radiographs from different imaging
sites and achieved a good generalisability of the developed
model, with the performance on the test data being only
slightly inferior. In our study, the test data were
independent from the validation data in terms of both
patients and readers [18, 30, 31]. While the heterogeneity
of our training dataset already reduced the risk of
overfitting on systematic image noise, e.g., to device-
specific image features, we further increased generalisabil-
ity by applying progressive re-sizing and the integration of
mix-up as well as label smoothing into model training.
Our study has some limitations. First, the reference for

the training of the model was the judgement of a limited

number of human readers (2 or, in the case of discrepancy
in the PROOF study, 3). Although both central readers in
the PROOF study had many years of experience in the
reading of radiographs of the sacroiliac joints, the
complex sacroiliac joint anatomy and heterogeneity of
radiographic techniques and quality have introduced
some uncertainty into the final classification used as a
reference. In the independent dataset, we selected
primarily only cases where both readers agreed to be
the reference standard for the evaluation of the model.
This approach was chosen because we believe that
these cases are most likely to be true positive or true
negative, while in the cases with a discrepancy, the
truth is not known. Nonetheless, the neural network-
based classification of the discrepant cases was well
balanced with the balanced cut-off indicating that our
algorithm is also applicable in such rather difficult
cases. It is noteworthy that, despite all the uncertainty
related to the assessment of radiographic sacroiliitis, a

Fig. 4 Gradient-weighted Class Activation Maps (Grad-CAMs) of the model for selected images taken from the test dataset. Grad-CAMs provide
visual explanations for the model decision, as they highlight the important image regions that led to the model’s decision. The examples
presented show that the model almost exclusively and correctly focusses on the sacroiliac joints to predict whether definite radiographic
sacroiliitis is present or not
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high level of agreement between the neural network’s
judgement and the human consensus judgement was
achieved in both validation and test datasets.
Another limitation is related to the chosen sets — all

patients were diagnosed with axSpA. The performance
of the algorithm in patients with undiagnosed back pain
and suspected axSpA in the diagnostic setting is not
known and should be investigated in future studies.

Conclusions
Radiographs of the sacroiliac joints are commonly used for
the diagnosis and classification of axial spondyloarthritis,
but the reliability of the definite radiographic sacroiliitis
detection is usually low. Convolutional neural networks can
detect radiographic sacroiliitis on pelvic radiographs with at
least the same level of accuracy as a human expert.
Utilisation of the proposed computer vision model could
thus enable highly accurate detection of definite
radiographic sacroiliitis, even in non-specialised sites.
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